终身会员
搜索
    上传资料 赚现金
    初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
    立即下载
    加入资料篮
    初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】01
    初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】02
    初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

    展开
    这是一份初中数学中考复习 专题13二次函数综合问题(共40题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共21页。试卷主要包含了已知抛物线y=x2+bx+c,在抛物线上,和点B等内容,欢迎下载使用。

    备战2023年中考数学必刷真题考点分类专练(全国通用)
    专题13二次函数综合问题
    一.解答题(共40小题)
    1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.
    (1)直接写出点B和点D的坐标;
    (2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;
    (3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.


    2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.
    (1)直接写出A,B两点的坐标;
    (2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;
    (3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).


    3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
    (1)请直接写出点A,B,C的坐标;
    (2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
    (3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.

    4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.
    (1)求a,b满足的关系式及c的值;
    (2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;
    (3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.

    5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.
    (1)求二次函数的表达式;
    (2)①求证:△OCD∽△A′BD;
    ②求的最小值;
    (3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.

    6.(2022•湘潭)已知抛物线y=x2+bx+c.
    (1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
    (Ⅰ)求该抛物线所表示的二次函数表达式;
    (Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
    (2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.


    7.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.

    (1)求该抛物线的表达式.
    (2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
    (3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
    8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
    (1)若h=1.5,EF=0.5m.
    ①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
    ②求下边缘抛物线与x轴的正半轴交点B的坐标;
    ③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.
    (2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.

    9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).

    (1)求点C的坐标;
    (2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
    (3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

    10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.
    (Ⅰ)若b=﹣2,c=﹣3,
    ①求点P的坐标;
    ②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;
    (Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.
    11.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
    (1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;
    (2)若∠ACO=∠CBD,求m的值;
    (3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.

    12.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
    13.(2022•乐山)如图1,已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C,且tan∠OAC=2.
    (1)求二次函数的解析式;
    (2)如图2,过点C作CD∥x轴交二次函数图象于点D,P是二次函数图象上异于点D的一个动点,连结PB、PC,若S△PBC=S△BCD,求点P的坐标;
    (3)如图3,若点P是二次函数图象上位于BC下方的一个动点,连结OP交BC于点Q.设点P的横坐标为t,试用含t的代数式表示的值,并求的最大值.

    14.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
    (1)写出图象W位于线段AB上方部分对应的函数关系式;
    (2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
    (3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

    15.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.
    (1)求y关于x的函数表达式.
    (2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?
    16.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
    (1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
    (2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
    (3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
    17.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
    (1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
    (2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
    (3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.

    18.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.

    19.(2022•泰安)若二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,﹣4),其对称轴为直线x=1,与x轴的另一交点为C.
    (1)求二次函数的表达式;
    (2)若点M在直线AB上,且在第四象限,过点M作MN⊥x轴于点N.
    ①若点N在线段OC上,且MN=3NC,求点M的坐标;
    ②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在抛物线上时,求点M的坐标.


    20.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).
    (1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
    (2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
    ①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
    ②若NP=2BP,令T=c,求T的最小值.
    阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式△≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.

    21.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
    (1)求抛物线和直线BC的函数表达式.
    (2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
    (3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.


    22.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
    (1)c的值为    ;
    (2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
    ②若a=﹣时,运动员落地点要超过K点,则b的取值范围为    ;
    (3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.

    23.(2022•武威)如图1,在平面直角坐标系中,抛物线y=(x+3)(x﹣a)与x轴交于A,B(4,0)两点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).
    (1)求此抛物线的表达式;
    (2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;
    (3)连接BD.
    ①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;
    ②如图3,连接CE,当CD=AE时,求BD+CE的最小值.

    24.(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x轴交于A、B两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.
    (1)求c的值;
    (2)直接写出T的值;
    (3)求的值.
    25.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:
    ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:
    售价x(元/千克)

    2.5
    3
    3.5
    4

    需求量y需求(吨)

    7.75
    7.2
    6.55
    5.8

    ②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.
    ③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.

    请解答下列问题:
    (1)求a,c的值.
    (2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.
    (3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.

    26.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求该二次函数的表达式;
    (2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.


    27.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
    28.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
    (1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
    (2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.

    29.(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
    (1)求此抛物线对应的函数表达式;
    (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:
    (ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;
    (ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).

    30.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
    (1)求抛物线的解析式;
    (2)求点P的坐标;
    (3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.

    31.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
    (1)求线段AC的长;
    (2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
    (3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.

    32.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
    (1)求抛物线的函数表达式;
    (2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;
    (3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.


    33.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
    (1)若二次函数的图象经过点(3,1).
    ①求这个二次函数的表达式;
    ②若y1=y2,求顶点到MN的距离;
    (2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.

    34.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
    (1)求a,c的值;
    (2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
    (3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.

    35.(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).
    (1)求该抛物线的函数表达式;
    (2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;
    (3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.


    36.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.
    (1)当k=2时,求A,B两点的坐标;
    (2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;
    (3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.

    37.(2022•德阳)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.
    (1)如图①,求射线MF的解析式;
    (2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;
    (3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.

    38.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
    (1)求抛物线的解析式.
    (2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
    (3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.


    39.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.


    40.(2022•遂宁)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
    (1)求抛物线的解析式;
    (2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
    (3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.




    相关试卷

    初中数学中考复习 专题30规律探究问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题30规律探究问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共8页。试卷主要包含了将全体正偶数排成一个三角形数阵等内容,欢迎下载使用。

    初中数学中考复习 专题29动点综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题29动点综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map