年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

    初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】第1页
    初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】第2页
    初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

    展开

    这是一份初中数学中考复习 专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。
    备战2023年中考数学必刷真题考点分类专练(全国通用)
    专题16等腰三角形与直角三角形(共50题)
    一.选择题(共24小题)
    1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是(  )
    A.8cm B.13cm C.8cm或13cm D.11cm或13cm
    2.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是(  )

    A.70° B.65° C.60° D.55°
    3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是(  )
    A.30° B.40° C.50° D.60°
    4.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是(  )

    A.(5,4) B.(3,4) C.(5,3) D.(4,3)
    5.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?(  )

    A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3
    C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3
    6.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为(  )

    A. B.3 C.2 D.
    7.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是(  )

    A.超市 B.医院 C.体育场 D.学校
    8.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为(  )

    A. B. C.2 D.
    9.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是(  )
    A. B. C.3 D.
    10.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是(  )

    A.BF=1 B.DC=3 C.AE=5 D.AC=9
    11.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为(  )

    A.25 B.22 C.19 D.18
    12.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是(  )

    A.只有甲答的对
    B.甲、丙答案合在一起才完整
    C.甲、乙答案合在一起才完整
    D.三人答案合在一起才完整
    13.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是(  )

    A.①②④ B.①②③ C.①③④ D.①②③④
    14.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为(  )
    A.9 B.12 C.14 D.16
    15.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=(  )

    A.2 B. C. D.
    16.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为(  )

    A. B. C. D.
    17.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是(  )

    A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC
    18.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是(  )

    A.12 B.9 C.6 D.3
    19.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )

    A.2 B.3 C.2 D.4
    20.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是(  )

    A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE
    21.(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于(  )

    A.15° B.25° C.35° D.45°
    22.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是(  )

    A. B.
    C. D.
    23.(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为(  )

    A. B. C.4 D.
    24.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为(  )

    A.6 B.8 C.10 D.12
    二.填空题(共15小题)
    25.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=   .

    26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为    .
    27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是    .
    28.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为    .

    29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是    .

    30.(2022•金华)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为    cm.

    31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为    .
    32.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.

    【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少    m(结果取整数,参考数据:≈1.7).

    33.(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为    .

    34.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是    .

    35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是    (结果用含m的式子表示).
    36.(2022•台州)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为    .

    37.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件    .


    38.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=   度.

    39.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为    .

    三.解答题(共11小题)
    40.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.
    (1)求证:∠EBD=∠EDB.
    (2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.

    41.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.
    (1)用关于a的代数式表示图2中小正方形的边长.
    (2)当a=3时,该小正方形的面积是多少?

    42.(2022•山西)综合与实践
    问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.
    猜想证明:
    (1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
    问题解决:
    (2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;
    (3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.

    43.(2022•武汉)问题提出
    如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.
    问题探究
    (1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;
    (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
    问题拓展
    如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,点DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).


    44.(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.
    (1)求证:MP=NP;
    (2)若AB=a,求线段PH的长(结果用含a的代数式表示).

    45.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.
    (1)求证:CE=CM.
    (2)若AB=4,求线段FC的长.

    46.(2022•陕西)问题提出
    (1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为    .
    问题探究
    (2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.
    问题解决
    (3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:
    ①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;
    ②作CD的垂直平分线l,与CD交于点E;
    ③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.
    请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.


    47.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.
    (1)如图,当P与E重合时,求α的度数.
    (2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.

    48.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.
    (1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;
    ①点E在线段AB的延长线上且BE=BD;
    ②点E在线段AB上且EB=ED.
    (2)若AB=6.
    ①当=时,求AE的长;
    ②直接写出运动过程中线段AE长度的最小值.


    49.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
    (1)你赞同他的作法吗?请说明理由.
    (2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.
    ①如图3,当点D运动到点A时,求∠CPE的度数.
    ②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.


    50.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.
    (1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;
    (2)规律探究:
    (Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;
    (Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;
    (3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.



    相关试卷

    初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】:

    这是一份初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共23页。

    初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】:

    这是一份初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。

    初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】:

    这是一份初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共12页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map