|试卷下载
终身会员
搜索
    上传资料 赚现金
    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)
    立即下载
    加入资料篮
    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)01
    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)02
    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)

    展开
    这是一份初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题24 与圆有关的压轴题
    一、单选题
    1.(2021·广西梧州)在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是(  )
    A.34 B.12 C.6+3 D.6
    2.(2021·湖南娄底)如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当⊙与直线只有一个公共点时,点A的坐标为(       )


    A. B. C. D.
    3.(2021·湖北荆州)如图,在菱形中,,,以为圆心、长为半径画,点为菱形内一点,连接,,.当为等腰直角三角形时,图中阴影部分的面积为(       )

    A. B. C. D.
    4.(2021·四川泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是

    A. B. C. D.
    5.(2021·四川眉山)如图,在以为直径的中,点为圆上的一点,,弦于点,弦交于点,交于点.若点是的中点,则的度数为(       )

    A.18° B.21° C.22.5° D.30°
    6.(2021·四川乐山)如图,已知,,,与、均相切,点是线段与抛物线的交点,则的值为(       )


    A.4 B. C. D.5
    7.(2021·四川泸州)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:(其中R为ABC的外接圆半径)成立.在ABC中,若∠A=75°,∠B=45°,c=4,则ABC的外接圆面积为(   )
    A. B. C. D.
    8.(2020·四川)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为(  )
    A.2 B.2﹣2 C.2+2 D.2
    9.(2020·山东临沂)如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小可能是(       )

    A. B. C. D.
    10.(2020·浙江温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为(       )

    A.1 B.2 C. D.
    二、填空题
    11.(2022·山东济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是___________.

    12.(2022·四川广安)如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2 …是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是___________(结果保留π).

    13.(2022·天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上.

    (Ⅰ)线段的长等于___________;
    (Ⅱ)若点M,N分别在射线上,满足且.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)___________.
    14.(2021·广东广州)如图,正方形ABCD的边长为4,点E是边BC上一点,且,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与交于点K,连结HG、CH.给出下列四个结论.(1)H是FK的中点;(2);(3);(4),其中正确的结论有________(填写所有正确结论的序号).

    15.(2021·广西柳州)如图,一次函数与反比例数的图像交于A,B两点,点M在以为圆心,半径为1的上,N是的中点,已知长的最大值为,则k的值是_______.

    16.(2021·四川达州)如图,在边长为6的等边中,点,分别是边,上的动点,且,连接,交于点,连接,则的最小值为___________.

    17.(2021·湖南岳阳)如图,在中,,的垂直平分线分别交、于点、,,为的外接圆,过点作的切线交于点,则下列结论正确的是______.(写出所有正确结论的序号)
    ①;②;③若,则的长为;④;⑤若,则.

    18.(2020·广西)如图,在边长为的菱形中,,点分别是上的动点,且与交于点.当点从点运动到点时,则点的运动路径长为_____.

    19.(2020·内蒙古呼和浩特)已知为⊙O的直径且长为,为⊙O上异于A,B的点,若与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形的顶角为120度,则;②若为正三角形,则;③若等腰三角形的对称轴经过点D,则;④无论点C在何处,将沿折叠,点D一定落在直径上,其中正确结论的序号为_________.
    20.(2020·湖北鄂州)如图,已知直线与x、y轴交于A、B两点,的半径为1,P为上一动点,切于Q点.当线段长取最小值时,直线交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为______________.

    21.(2020·湖南岳阳)如图,为半⊙O的直径,,是半圆上的三等分点,,与半⊙O相切于点,点为上一动点(不与点,重合),直线交于点,于点,延长交于点,则下列结论正确的是______________.(写出所有正确结论的序号)
    ①;②的长为;③;④;⑤为定值.

    22.(2020·贵州贵阳)如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.

    23.(2020·江苏连云港)如图,在平面直角坐标系中,半径为2的与轴的正半轴交于点,点是上一动点,点为弦的中点,直线与轴、轴分别交于点、,则面积的最小值为________.

    三、解答题
    24.(2022·四川绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.

    (1)求证:;
    (2)若⊙O的半径为,DE=1,求AE的长度;
    (3)在(2)的条件下,求的面积.

    25.(2022·甘肃兰州)如图,是的外接圆,AB是直径,,连接AD,,AC与OD相交于点E.

    (1)求证:AD是的切线;
    (2)若,,求的半径.




    26.(2022·广西柳州)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.

    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值;
    (3)若GH=,HB=2,求⊙O的直径.



    27.(2022·广东深圳)一个玻璃球体近似半圆为直径,半圆上点处有个吊灯的中点为

    (1)如图①,为一条拉线,在上,求的长度.
    (2)如图②,一个玻璃镜与圆相切,为切点,为上一点,为入射光线,为反射光线,求的长度.
    (3)如图③,是线段上的动点,为入射光线,为反射光线交圆于点在从运动到的过程中,求点的运动路径长.




    28.(2022·江苏常州)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.


    (1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);
    (2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
    (3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.

    29.(2022·贵州遵义)与实践
    “善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.
    提出问题:
    如图1,在线段同侧有两点,,连接,,,,如果,那么,,,四点在同一个圆上.


    探究展示:
    如图2,作经过点,,的,在劣弧上取一点(不与,重合),连接,则(依据1)




    点,,,四点在同一个圆上(对角互补的四边形四个顶点共圆)
    点,在点,,所确定的上(依据2)
    点,,,四点在同一个圆上
    (1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?
    依据1:__________;依据2:__________.
    (2)图3,在四边形中,,,则的度数为__________.


    (3)展探究:如图4,已知是等腰三角形,,点在上(不与的中点重合),连接.作点关于的对称点,连接并延长交的延长线于,连接,.


    ①求证:,,,四点共圆;
    ②若,的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.




    30.(2022·黑龙江哈尔滨)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.

    (1)如图1,求证:;
    (2)如图2,延长交于点F,若,求证:;
    (3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.






    31.(2022·黑龙江绥化)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.


    (1)求证:.
    (2)若,,求的长.
    (3)在点C运动过程中,当时,求的值.




    32.(2022·黑龙江大庆)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.

    (1)求证:是的切线;
    (2)求证:;
    (3)当时,求弦的长.



    33.(2022·湖北荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.

    (1)求证:DE是半圆O的切线;
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.

    34.(2022·四川凉山)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6

    (1)判断⊙M与x轴的位置关系,并说明理由;
    (2)求AB的长;
    (3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.







    35.(2021·山东德州)已知为的外接圆,.
    (1)如图1,延长至点,使,连接.

    ①求证:为直角三角形;
    ②若的半径为4,,求的值;
    (2)如图2,若,为上的一点,且点,位于两侧,作关于对称的图形,连接,试猜想,,三者之间的数量关系并给予证明.






    36.(2021·辽宁鞍山)如图,AB为的直径,C为上一点,D为AB上一点,,过点A作交CD的延长线于点E,CE交于点G,连接AC,AG,在EA的延长线上取点F,使.
    (1)求证:CF是的切线;
    (2)若,,求的半径.




    37.(2021·贵州遵义)点A是半径为2的⊙O上一动点,点B是⊙O外一定点,OB=6.连接OA,AB.

    (1)【阅读感知】如图①,当△ABC是等边三角形时,连接OC,求OC的最大值;将下列解答过程补充完整.
    解:将线段OB绕点B顺时针旋转60°到O′B,连接OO′,CO′.
    由旋转的性质知:∠OBO′=60°,BO′=BO=6,即△OBO′是等边三角形.
    ∴OO′=BO=6
    又∵△ABC是等边三角形
    ∴∠ABC=60°,AB=BC
    ∴∠OBO′=∠ABC=60°
    ∴∠OBA=∠O′BC
    在△OBA和△O′BC中,

    ∴   (SAS)
    ∴OA=O′C
    在△OO′C中,OC<OO′+O′C
    当O,O′,C三点共线,且点C在OO′的延长线上时,OC=OO′+O′C
    即OC≤OO′+O′C
    ∴当O,O′,C三点共线,且点C在OO′的延长线上时,OC取最大值,最大值是    .
    (2)【类比探究】如图②,当四边形ABCD是正方形时,连接OC,求OC的最小值;
    (3)【理解运用】如图③,当△ABC是以AB为腰,顶角为120°的等腰三角形时,连接OC,求OC的最小值,并直接写出此时△ABC的周长.








    38.(2021·江苏泰州)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.

    (1)若m=3.
    ①求证:∠OAD=60°;
    ②求的值;
    (2)用含m的代数式表示,请直接写出结果;
    (3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.






    39.(2021·黑龙江哈尔滨)已知是的外接圆,为的直径,点为的中点,连接并延长交于点,连接,交于点.
    (1)如图1,求证:;

    (2)如图2,过点作,交于点,交于点,连接,,若,求证:;

    (3)如图3,在(2)的条件下,连接,若,求的长.




    40.(2021·四川宜宾)如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
    (1)判断直线CD与⊙O的位置关系,并说明理由;
    (2)若tan∠ADC=,AC=2,求⊙O的半径;
    (3)如图2,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连结BE.求sin∠DBE的值.






    41.(2021·广西来宾)如图,已知,是的直径,,与的边,分别交于点,,连接并延长,与的延长线交于点,.

    (1)求证:是的切线;
    (2)若,求的值;
    (3)在(2)的条件下,若的平分线交于点,连接交于点,求的值.




    42.(2021·湖北宜昌)如图,在菱形中,是对角线上一点(),,垂足为,以为半径的分别交于点,交的延长线于点,与交于点.

    (1)求证:是的切线;
    (2)若是的中点,,.
    ①求的长;
    ②求的长.




    43.(2021·河北)如图,的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为(为1~12的整数),过点作的切线交延长线于点.

    (1)通过计算比较直径和劣弧长度哪个更长;
    (2)连接,则和有什么特殊位置关系?请简要说明理由;
    (3)求切线长的值.
    44.(2021·新疆)如图,AC是⊙O的直径,BC,BD是⊙O的弦,M为BC的中点,OM与BD交于点F,过点D作,交BC的延长线于点E,且CD平分.

    (1)求证:DE是⊙O的切线;
    (2)求证:;
    (3)若,,求BF的长.




    45.(2021·湖南株洲)如图所示,是的直径,点、是上不同的两点,直线交线段于点,交过点的直线于点,若,且.

    (1)求证:直线是的切线;
    (2)连接、、、,若.
    ①求证:;
    ②过点作,交线段于点,点为线段的中点,若,求线段的长度.

    46.(2021·浙江宁波)如图1,四边形内接于,为直径,上存在点E,满足,连结并延长交的延长线于点F,与交于点G.

    (1)若,请用含的代数式表列.
    (2)如图2,连结.求证;.
    (3)如图3,在(2)的条件下,连结,.
    ①若,求的周长.
    ②求的最小值.




    47.(2021·浙江台州)如图,BD是半径为3的⊙O的一条弦,BD=4,点A是⊙O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.


    (1)如图2,若点A是劣弧的中点.
    ①求证:平行四边形ABCD是菱形;
    ②求平行四边形ABCD的面积.
    (2)若点A运动到优弧上,且平行四边形ABCD有一边与⊙O相切.
    ①求AB的长;
    ②直接写出平行四边形ABCD对角线所夹锐角的正切值.









    48.(2020·四川)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.
    (1)求证:BP是⊙O的切线;
    (2)如果OA=5,AM=4,求PN的值;
    (3)如果PD=PH,求证:AH•OP=HP•AP.





    49.(2020·内蒙古鄂尔多斯)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
    (1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为  .
    (2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
    ①连接EC,证明:EC是⊙B的切线;
    ②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.








    50.(2020·四川绵阳)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.
    (1)求BC,CD;
    (2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.
    ①将△AHI沿AC翻折得△AI,是否存在时刻t,使点恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;
    ②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.






    相关试卷

    初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版): 这是一份初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版): 这是一份初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版),共120页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版): 这是一份初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map