初中数学中考复习 专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
展开
这是一份初中数学中考复习 专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共15页。
备战2023年中考数学必刷真题考点分类专练(全国通用)专题25圆的有关计算(共53题)一.选择题(共29小题)1.(2022•武威)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为( )A.20πm B.30πm C.40πm D.50πm2.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )A.m B.m C.m D.(+2)m3.(2022•孝感)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为( )A.π B.π C.π D.2π4.(2022•台湾)有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD=8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?( )A.+=,+= B.+=,+≠ C.+≠,+= D.+≠,+≠5.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )A.11πcm B.πcm C.7πcm D.πcm6.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )A.π B.π C.π D.π7.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为( )A.﹣ B.﹣ C.﹣ D.﹣8.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )A.30πcm2 B.60πcm2 C.120πcm2 D.180πcm29.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A.2π B.2 C.2π﹣4 D.2π﹣210.(2022•贺州)如图,在等腰直角△OAB中,点E在OA上,以点O为圆心、OE为半径作圆弧交OB于点F,连接EF,已知阴影部分面积为π﹣2,则EF的长度为( )A. B.2 C.2 D.311.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为( )A.3π﹣3 B.3π﹣ C.2π﹣3 D.6π﹣12.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.﹣ B.2﹣π C. D.﹣13.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是( )A.375πcm2 B.450πcm2 C.600πcm2 D.750πcm214.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为( )A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m215.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为( )A.6π﹣9 B.12π﹣9 C.6π﹣ D.12π﹣16.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A.2π﹣2 B.2π﹣ C.2π D.π﹣17.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A.π﹣ B.π﹣ C.π﹣2 D.π﹣18.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为( )A.米2 B.米2 C.米2 D.米219.(2021•宁夏)如图,已知⊙O的半径为1,AB是直径,分别以点A、B为圆心,以AB的长为半径画弧.两弧相交于C、D两点,则图中阴影部分的面积是( )A. B. C. D.20.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )A.60π B.65π C.90π D.120π21.(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为( )A.10cm B.20cm C.5cm D.24cm22.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为( )A.12π B.15π C.20π D.24π23.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是( )A.16π B.52π C.36π D.72π24.(2022•宁波)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为( )A.36πcm2 B.24πcm2 C.16πcm2 D.12πcm225.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )A.cm2 B.cm2 C.175πcm2 D.350πcm226.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.3cm C.4cm D.5cm27.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )A.4, B.3,π C.2, D.3,2π28.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )A.3 B. C. D.329.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. B. C.3 D.2二.填空题(共20小题)30.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为 .31.(2022•衡阳)如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了 cm.(结果保留π)32.(2022•新疆)如图,⊙O的半径为2,点A,B,C都在⊙O上,若∠B=30°,则的长为 .(结果用含有π的式子表示)33.(2022•温州)若扇形的圆心角为120°,半径为,则它的弧长为 .34.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 度.35.(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为 .36.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是 .37.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .38.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为 .39.(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为 .(结果保留π)40.(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为 .(结果不取近似值)41.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 .42.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为 cm.43.(2022•齐齐哈尔)圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为 °.44.(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是 .45.(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是 cm.46.(2022•黑龙江)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 .47.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 度.48.(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是 .49.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为 .三.解答题(共4小题)50.(2022•泰州)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.51.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).52.(2022•湘潭)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣4,0),C(﹣2,2).将△ABC绕原点O顺时针旋转90°后得到△A1B1C1.(1)请写出A1、B1、C1三点的坐标:A1 ,B1 ,C1 ;(2)求点B旋转到点B1的弧长.53.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法 如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.
相关试卷
这是一份初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。
这是一份初中数学中考复习 专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共39页。
这是一份初中数学中考复习 专题24圆的有关位置关系(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。