初中数学中考复习 专题26数据的收集整理与描述(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
展开备战2023年中考数学必刷真题考点分类专练(全国通用)
专题26数据的收集整理与描述(共52题)
一.选择题(共20小题)
1.(2022•桂林)下列调查中,最适合采用全面调查的是( )
A.了解全国中学生的睡眠时间
B.了解某河流的水质情况
C.调查全班同学的视力情况
D.了解一批灯泡的使用寿命
2.(2022•玉林)垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:
①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率
②整理采访记录并绘制空矿泉水瓶投放频数分布表
③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比
正确统计步骤的顺序应该是( )
A.②→③→① B.②→①→③ C.③→①→② D.③→②→①
3.(2022•雅安)在射击训练中,某队员的10次射击成绩如图,则这10次成绩的中位数和众数分别是( )
A.9.3,9.6 B.9.5,9.4 C.9.5,9.6 D.9.6,9.8
4.(2022•孝感)下列调查中,适宜采用全面调查方式的是( )
A.检测“神舟十四号”载人飞船零件的质量
B.检测一批LED灯的使用寿命
C.检测黄冈、孝感、咸宁三市的空气质量
D.检测一批家用汽车的抗撞击能力
5.(2022•广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是( )
A.平均数是6 B.众数是7 C.中位数是11 D.方差是8
6.(2022•台州)从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )
A.平均数 B.中位数 C.众数 D.方差
7.(2022•泰安)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )
A.最高成绩是9.4环 B.平均成绩是9环
C.这组成绩的众数是9环 D.这组成绩的方差是8.7
8.(2022•武威)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )
A.完成航天医学领域实验项数最多
B.完成空间应用领域实验有5项
C.完成人因工程技术实验项数比空间应用领域实验项数多
D.完成人因工程技术实验项数占空间科学实验总项数的24.3%
9.(2022•苏州)为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )
A.60人 B.100人 C.160人 D.400人
10.(2022•台湾)某国主计处调查2017年该国所有受雇员工的年薪资料,并公布调查结果如图的直方图所示.
已知总调查人数为750万人,根据图中信息计算,该国受雇员工年薪低于平均数的人数占总调查人数的百分率为下列何者?( )
A.6% B.50% C.68% D.73%
11.(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.
综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )
A.F1 B.F6 C.F7 D.F10
12.(2022•赤峰)某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是( )
A.这次调查的样本容量是200
B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人
C.扇形统计图中,科技部分所对应的圆心角是36°
D.被调查的学生中,最喜欢艺术课外活动的有50人
13.(2022•遵义)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是( )
作业时间频数分布表
组别
作业时间(单位:分钟)
频数
A
60<t≤70
8
B
70<t≤80
17
C
80<t≤90
m
D
t>90
5
A.调查的样本容量为50
B.频数分布表中m的值为20
C.若该校有1000名学生,作业完成的时间超过90分钟的约100人
D.在扇形统计图中B组所对的圆心角是144°
14.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )
A.75人 B.90人 C.108人 D.150人
15.(2022•金华)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为( )
A.5 B.6 C.7 D.8
16.(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为( )
A.3时 B.6时 C.9时 D.12时
17.(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是( )
A.条形图 B.折线图 C.扇形图 D.直方图
18.(2022•黑龙江)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )
组别
A型
B型
AB型
O型
频率
0.4
0.35
0.1
0.15
A.16人 B.14人 C.4人 D.6人
19.(2021•盘锦)空气是由多种气体混合组成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )
A.条形图 B.扇形图 C.折线图 D.直方图
20.(2021•盘锦)下列调查中,适宜采用抽样调查的是( )
A.调查某班学生的身高情况
B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况
C.调查某批汽车的抗撞击能力
D.调查一架“歼20”隐形战斗机各零部件的质量
二.填空题(共4小题)
21.(2022•长沙)为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有 名.
22.(2022•株洲)A市安排若干名医护工作人员援助某地新冠疫情防控工作,人员结构统计如下表:
人员
领队
心理医生
专业医生
专业护士
占总人数的百分比
4%
★
56%
则该批医护工作人员中“专业医生”占总人数的百分比为 .
23.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 鱼池.(填甲或乙)
24.(2022•岳阳)聚焦“双减”政策落地,凸显寒假作业特色.某学校评选出的寒假优质特色作业共分为四类:A(节日文化篇),B(安全防疫篇),C(劳动实践篇),D(冬奥运动篇).下面是根据统计结果绘制的两幅不完整的统计图,则B类作业有 份.
三.解答题(共28小题)
25.(2022•临沂)省农科院为某县选育小麦种子,为了解种子的产量及产量的稳定性,在该县的10个乡镇中,每个乡镇选择两块自然条件相近的实验田分别种植甲、乙两种小麦,得到其亩产量数据如下(单位:kg):
甲种小麦:804 818 802 816 806 811 818 811 803 819
乙种小麦:804 811 806 810 802 812 814 804 807 809
画以上甲种小麦数据的频数分布直方图,甲乙两种小麦数据的折线图,得到图1,图2
(1)图1中,a= ,b= ;
(2)根据图1,若该县选择种植甲种小麦,则其亩产量W(单位:kg)落在 内的可能性最大;
A.800≤W<805
B.805≤W<810
C.810≤W<815
D.815≤W<820
(3)观察图2,从小麦的产量或产量的稳定性的角度,你认为农科院应推荐种植哪种小麦?简述理由.
26.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:
(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)
注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.
回答下列问题:
(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是 %.
(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为 万人.(只填算式,不计算结果)
(3)下列推断较为合理的是 (填序号).
①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.
②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.
27.(2022•哈尔滨)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.
28.(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:
A组:x<8.5
B组:8.5≤x<9
C组:9≤x<9.5
D组:9.5≤x<10
E组:x≥10
根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)本次共调查了 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,求D组所对应的扇形圆心角的度数;
(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?
29.(2022•大庆)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:
抽取的200名学生成绩统计表
组别
海选成绩
人数
A组
50≤x<60
10
B组
60≤x<70
30
C组
70≤x<80
40
D组
80≤x<90
a
E组
90≤x≤100
70
请根据所给信息解答下列问题:
(1)填空:①a= ,②b= ,③θ= 度;
(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;
(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?
30.(2022•威海)某学校开展“家国情•诵经典”读书活动.为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天阅读时间的数据(m/分钟).
将收集的数据分为A,B,C,D,E五个等级,绘制成如下统计图表(尚不完整):
平均每天阅读时间统计表
等级
人数(频数)
A(10≤m<20)
5
B(20≤m<30)
10
C(30≤m<40)
x
D(40≤m<50)
80
E(50≤m≤60)
y
请根据图表中的信息,解答下列问题:
(1)求x的值;
(2)这组数据的中位数所在的等级是 ;
(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”予以表扬.若全校学生以1800人计算,估计受表扬的学生人数.
31.(2022•包头)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),并绘制成频数分布直方图(如图).
请根据所给信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生;
(2)若测试成绩达到80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;
(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.
32.(2022•泰州)农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.
(1)2017﹣2021年农业产值增长率的中位数是 %;若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加 亿元(结果保留整数).
(2)小亮观察折线统计图后认为:这5年中每年服务业产值都比工业产值高.你同意他的说法吗?请结合扇形统计图说明你的理由.
33.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:
10 4 7 5 4 10 5 4 4 18 8 3 5 10 8
(1)补全月销售额数据的条形统计图.
(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?
(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?
34.(2022•无锡)育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:
育人中学初二学生30秒跳绳测试成绩的频数分布表
跳绳个数(x)
x≤50
50<x≤60
60<x≤70
70<x≤80
x>80
频数(摸底测试)
19
27
72
a
17
频数(最终测试)
3
6
59
b
c
(1)表格中a= ;
(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)
(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?
35.(2022•齐齐哈尔)“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:
(1)表中m= ,n= ,p= ;
(2)将条形图补充完整;
(3)若制成扇形图,则C组所对应的圆心角为 °;
(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?
组别
锻炼时间(分钟)
频数(人)
百分比
A
0≤x≤30
50
25%
B
30<x≤60
m
40%
C
60<x≤90
40
p
D
x>90
n
15%
36.(2022•福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.
(1)判断活动前、后两次调查数据的中位数分别落在哪一组;
(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
37.(2022•桂林)某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:
项目
内容
百分比
A
跳长绳
25%
B
抛绣球
35%
C
拔河
30%
D
跳竹竿舞
a
请结合统计图表,回答下列问题:
(1)填空:a= ;
(2)本次调查的学生总人数是多少?
(3)请将条形统计图补充完整;
(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.
38.(2022•湖北)为了解我市中学生对疫情防控知识的掌握情况,在全市随机抽取了m名中学生进行了一次测试,随后绘制成如下尚不完整的统计图表:(测试卷满分100分,按成绩划分为A,B,C,D四个等级)
等级
成绩x
频数
A
90≤x≤100
48
B
80≤x<90
n
C
70≤x<80
32
D
0≤x<70
8
根据以上信息,解答下列问题:
(1)填空:①m= ,n= ,p= ;
②抽取的这m名中学生,其成绩的中位数落在 等级(填A,B,C或D);
(2)我市约有5万名中学生,若全部参加这次测试,请你估计约有多少名中学生的成绩能达到A等级.
39.(2022•永州)“风华中学”计划在劳动技术课中增设剪纸、陶艺,厨艺、刺绣、养殖等五类选择性“技能课程”,加大培养学生的劳动习惯和实践操作能力,为了解学生选择各“技能课程”的意向,从全校随机抽取了部分学生进行问卷调查,将调查结果整理并绘制如下不完整统计图表:
样本中选择各技能课程的人数统计表
技能课程
人数
A:剪纸
B:陶艺
20
C:厨艺
a
D:刺绣
20
E:养殖
请根据上述统计数据解决下列问题:
(1)扇形统计图中m= .
(2)所抽取样本的样本容量是 ,频数统计表中a= .
(3)若该校有2000名学生,请你估计全校有意向选择“养殖”技能课程的人数.
40.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
a.成绩频数分布表:
成绩x(分)
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
频数
7
9
12
16
6
b.成绩在70≤x<80这一组的是(单位:分):
70 71 72 72 74 77 78 78 78 79 79 79
根据以上信息,回答下列问题:
(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .
(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
41.(2022•常德)2020年7月,教育部印发的《大中小学劳动教育指导纲要(试行)》中明确要求中小学劳动教育课平均每周不少于1课时,初中生平均每周劳动时间不少于3小时.某初级中学为了解学生劳动教育的情况,从本校学生中随机抽取了500名进行问卷调查.如图是根据此次调查结果得到的统计图.
请根据统计图回答下列问题:
(1)本次调查中,平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为多少?
(2)若该校有2000名学生,请估计最喜欢的劳动课程为木工的有多少人.
(3)请你根据本次问卷调查的结果给同学和学校各提一条合理化建议.
42.(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):
××中学学生读书情况调查报告
调查主题
××中学学生读书情况
调查方式
抽样调查
调查对象
××中学学生
数据的收集、整理与描述
第一项
您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)
A.8小时及以上;
B.6~8小时;
C.4~6小时;
D.0~4小时.
第二项
您阅读的课外书的主要来源是(可多选)
E.自行购买;
F.从图书馆借阅;
G.免费数字阅读;
H.向他人借阅.
调查结论
……
请根据以上调查报告,解答下列问题:
(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;
(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;
(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.
43.(2022•河北)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.
44.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
(1)m= ,n= ;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
45.(2022•娄底)按国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》要求,各中小学校积极行动,取得了良好的成绩.某中学随机抽取了部分学生对他们一周的课外阅读时间(A:10h以上,B:8h~10h,C:6h~8h,D:6h以下)进行问卷调查,将所得数据进行分类,统计绘制了如下不完整的统计图.请根据图中的信息,解答下列问题:
(1)本次调查的学生共 名;
(2)a= ,b= ;
(3)补全条形统计图.
46.(2022•湘潭)百年青春百年梦,初心献党向未来.为热烈庆祝中国共产主义青年团成立10周年,继承先烈遗志,传承“五四”精神.某中学在“做新时代好少年,强国有我”的系列活动中,开展了“好书伴我成长”的读书活动.为了解5月份八年级学生的读书情况,随机调查了八年级20名学生读书数量(单位:本),并进行了以下数据的整理与分析:
数据收集
2 5 3 5 4 6 1 5 3 4
3 6 7 5 8 3 4 7 3 4
数据整理
本数
0<x≤2
2<x≤4
4<x≤6
6<x≤8
组别
A
B
C
D
频数
2
m
6
3
数据分析 绘制成不完整的扇形统计图:
依据统计信息回答问题:
(1)在统计表中,m= ;
(2)在扇形统计图中,C部分对应的圆心角的度数为 ;
(3)若该校八年级学生人数为200人,请根据上述调查结果,估计该校八年级学生读书在4本以上的人数.
47.(2022•宜昌)某校为响应“传承屈原文化•弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:
时间段/分钟
30≤x<60
60≤x<90
90≤x<120
120≤x<150
组中值
75
105
135
频数/人
6
20
4
数据分组后,一个小组的两个端点的数的平均数,叫做这个小组的组中值.
请你根据图表中提供的信息,解答下面的问题:
(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是 ;a= ;样本数据的中位数位于 ~ 分钟时间段;
(2)请将表格补充完整;
(3)请通过计算估计该校八年级学生周末课外平均阅读时间.
48.(2022•台湾)一副完整的扑克牌有4种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.
某扑克牌游戏中,玩家可以利用「牌值」来评估尚未发出的牌之点数大小.「牌值」的计算方式为:未发牌时先设「牌值」为0;若发出的牌点数为2至9时,表示发出点数小的牌,则「牌值」加1;若发出的牌点数为10、J、Q、K、A时,表示发出点数大的牌,则「牌值」减1.
例如:从一副完整的扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的「牌值」为0+1﹣1+1+1﹣1+1=2.
请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:
(1)若一副完整的扑克牌发出了11张点数小的牌及4张点数大的牌,则此时的「牌值」为何?
(2)已知一副完整的扑克牌已发出28张牌,且此时的「牌值」为10.若剩下的牌中每一张牌被发出的机会皆相等,则下一张发出的牌是点数大的牌的机率是多少?
49.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:
培训前
成绩(分)
6
7
8
9
10
划记
正正
正
正
人数(人)
12
4
7
5
4
培训后
成绩(分)
6
7
8
9
10
划记
一
正
正正正
人数(人)
4
1
3
9
15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
50.(2022•孝感)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查的样本容量是 ,请补全条形统计图;
(2)在扇形统计图中,B组的圆心角是 度,本次调查数据的中位数落在 组内;
(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.
51.(2022•台州)某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成下表.
学生目前每周劳动时间统计表
每周劳动时间x(小时)
0.5≤x<1.5
1.5≤x<2.5
2.5≤x<3.5
3.5≤x<4.5
4.5≤x<5.5
组中值
1
2
3
4
5
人数(人)
21
30
19
18
12
(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?
(2)估计该校学生目前每周劳动时间的平均数.
(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.
52.(2022•武汉)为庆祝中国共青团成立100周年,某校开展四项活动:A项参观学习,B项团史宣讲,C项经典诵读,D项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.
(1)本次调查的样本容量是 ,B项活动所在扇形的圆心角的大小是 ,条形统计图中C项活动的人数是 ;
(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.
初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。
初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题27数据的分析(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共12页。
初中数学中考复习 专题26数据的收集整理与描述(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】: 这是一份初中数学中考复习 专题26数据的收集整理与描述(共52题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共49页。试卷主要包含了垃圾分类利国利民等内容,欢迎下载使用。