初中数学中考复习 专题33四边形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
展开
这是一份初中数学中考复习 专题33四边形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共80页。试卷主要包含了解答题等内容,欢迎下载使用。
备战2023年中考数学必刷真题考点分类专练(全国通用)
专题33四边形压轴综合问题
一、解答题
1.(2022·甘肃兰州·中考真题)综合与实践,【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,AE⊥EP,EP与正方形的外角△DCG的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;
(1)【思考尝试】同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.
(2)【实践探究】希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接CP,可以求出∠DCP的大小,请你思考并解答这个问题.
(3)【拓展迁移】突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当AB=4时,请你求出△ADP周长的最小值.
【答案】(1)答案见解析
(2)45°,理由见解析
(3)4+45,理由见解析
【解析】
【分析】
(1)取AB的中点F,连接EF,利用同角的余角相等说明∠PEC=∠BAE,再根据ASA证明△AFE≌△ECP,得AE=EP;
(2)在AB上取AF=EC,连接EF,由(1)同理可得∠CEP=∠FAE,则△FAE≌△CEP(SAS),再说明△BEF是等腰直角三角形即可得出答案;
(3)作DG⊥CP,交BC的延长线于G,交CP于O,连接AG,则△DCG是等腰直角三角形,可知点D与G关于CP对称,则AP+DP的最小值为AG的长,利用勾股定理求出AG,进而得出答案.
(1)
解:AE=EP,
理由如下:取AB的中点F,连接EF,
∵F、E分别为AB、BC的中点,
∴AF=BF=BE=CE,
∴∠BFE=45°,
∴∠AFE=135°,
∵CP平分∠DCG,
∴∠DCP=45°,
∴∠ECP=135°,
∴∠AFE=∠ECP,
∵AE⊥PE,
∴∠AEP=90°,
∴∠AEB+∠PEC=90°,
∵∠AEB+∠BAE=90°,
∴∠PEC=∠BAE,
∴△AFE≌△ECP(ASA),
∴AE=EP;
(2)
解:在AB上取AF=EC,连接EF,
由(1)同理可得∠CEP=∠FAE,
∵AF=EC,AE=EP,
∴△FAE≌△CEP(SAS),
∴∠ECP=∠AFE,
∵AF=EC,AB=BC,
∴BF=BE,
∴∠BEF=∠BFE=45°,
∴∠AFE=135°,
∴∠ECP=135°,
∴∠DCP=45°;
(3)
解:作DG⊥CP,交BC的延长线于G,交CP于O,连接AG,
由(2)知,∠DCP=45°,
∴∠CDG=45°,
∴△DCG是等腰直角三角形,
∴点D与G关于CP对称,
∴AP+DP的最小值为AG的长,
∵AB=4,
∴BG=8,
由勾股定理得AG=45,
∴△ADP周长的最小值为AD+AG=4+45.
【点睛】
本题是四边形综合题,主要考查了正方形的性质,轴对称﹣最短路线问题,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.
2.(2022·广东广州·中考真题)如图,在菱形ABCD中,∠BAD = 120°,AB = 6,连接BD .
(1)求BD的长;
(2)点E为线段BD上一动点(不与点B,D重合), 点F在边AD上,且BE=3DF,
①当CE丄AB时,求四边形ABEF的面积;
②当四边形ABEF的面积取得最小值时,CE+3CF的值是否也最小?如果是,求CE+3CF的最小值;如果不是,请说明理由.
【答案】(1)BD=63;
(2)①四边形ABEF的面积为73;②最小值为12
【解析】
【分析】
(1)证明△ABC是等边三角形,可得BO= 33,即可求解;
(2)过点E作AD的垂线,分别交AD和BC于点M,N, 根据菱形的面积可求出MN=33,设BE=x,则EN=12x,从而得到EM=MN-EN=33-12x,再由BE=3DF,可得DF=33x,从而得到四边形ABEF的面积s= S△ABD - S△DEF =312x-332+2734,①当CE⊥AB时,可得点E是△ABC重心,从而得到BE=CE=23BO=23×33=23,即可求解;②作CH⊥AD于H,可得当点E和F分别到达点O和点H位置时,CF和CE分别达到最小值;再由s=312x-332+2734,可得当x=33,即BE=33时, s达到最小值,从而得到此时点E恰好在点O的位置,而点F也恰好在点H位置,即可求解.
(1)
解∶连接AC,设AC与BD的交点为O,如图,
∵四边形ABCD是菱形,
∴AC⊥BD , OA=OC,AB∥CD,AC平分∠DAB,
∵∠BAD = 120°,
∴∠CAB=60°,
∴△ABC是等边三角形,
∴BO=AB▪sin60°=6×32=33,
∴BD=2BO=63;
(2)
解:如图,过点E作AD的垂线,分别交AD和BC于点M,N,
∵△ABC是等边三角形,
∴AC=AB=6,
由(1)得:BD=63;
菱形ABCD中,对角线BD平分∠ABC,AB∥CD,BC=AB=6,
∴MN⊥BC,
∵∠BAD=120°,
∴∠ABC=60°,
∴∠EBN=30°;
∴EN=12BE
∵S菱形ABCD=12AC⋅BD=MN⋅BC,
∴MN=33,
设BE=x,则EN=12x,
∴EM=MN-EN=33-12x,
∵S菱形ABCD= AD▪MN=6×33=183,
∴S△ABD= 12S菱形ABCD=93,
∵BE=3DF,
∴DF=BE3=33x,
∴S△DEF=12DF ▪EM=12⋅33x33-12x =-312x2+32x,
记四边形ABEF的面积为s,
∴s= S△ABD - S△DEF =93-(-312x2+32x)=312x-332+2734,
∵点E在BD上,且不在端点,∴0
相关试卷
这是一份初中数学中考复习 专题33四边形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共15页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共77页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共15页。试卷主要包含了解答题等内容,欢迎下载使用。