年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023高考数学二轮真题与模拟训练26讲 专题05 导数及其应用解析

    2023高考数学二轮真题与模拟训练26讲  专题05 导数及其应用解析第1页
    2023高考数学二轮真题与模拟训练26讲  专题05 导数及其应用解析第2页
    2023高考数学二轮真题与模拟训练26讲  专题05 导数及其应用解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023高考数学二轮真题与模拟训练26讲 专题05 导数及其应用解析

    展开

    这是一份2023高考数学二轮真题与模拟训练26讲 专题05 导数及其应用解析
    专题5 导数及其应用第一部分 真题分类一、单选题1.(2021·全国高考真题)若过点可以作曲线的两条切线,则( )A. B.C. D.【答案】D【解析】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.2.(2021·全国高考真题(理))设,若为函数的极大值点,则( )A. B. C. D.【答案】D【解析】若,则为单调函数,无极值点,不符合题意,故.依题意,为函数的极大值点,当时,由,,画出的图象如下图所示:由图可知,,故.当时,由时,,画出的图象如下图所示:由图可知,,故.综上所述,成立.故选:D3.(2020·全国高考真题(理))若直线l与曲线y=和x2+y2=都相切,则l的方程为( )A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+【答案】D【解析】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.4.(2020·全国高考真题(理))函数的图像在点处的切线方程为( )A. B.C. D.【答案】B【解析】,,,,因此,所求切线的方程为,即.故选:B.5.已知曲线在点处的切线方程为,则( )A. B. C. D.【答案】D【解析】解析:,将代入得,故选D.6.已知,设函数若关于的不等式在上恒成立,则的取值范围为( )A. B. C. D.【答案】C【解析】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.二、填空题7.(2021·全国高考真题(理))曲线在点处的切线方程为__________.【答案】【解析】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故答案为:.8.(2021·全国高考真题)函数的最小值为______.【答案】1【解析】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.9.(2020·江苏高考真题)在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是__________.【答案】【解析】设圆心到直线距离为,则所以令(负值舍去)当时,;当时,,因此当时,取最大值,即取最大值为,故答案为:10.(2020·全国高考真题(文))设函数.若,则a=_________.【答案】1【解析】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.11.(2020·全国高考真题(文))曲线的一条切线的斜率为2,则该切线的方程为______________.【答案】【解析】设切线的切点坐标为,,所以切点坐标为,所求的切线方程为,即.故答案为:.12.在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是_____.【答案】4.【解析】当直线平移到与曲线相切位置时,切点Q即为点P到直线的距离最小.由,得,,即切点,则切点Q到直线的距离为,故答案为.三、解答题13.(2021·北京高考真题)已知函数.(1)若,求在处切线方程;(2)若函数在处取得极值,求的单调区间,以及最大值和最小值.【答案】(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.【解析】(1)当时,,则,,,此时,曲线在点处的切线方程为,即;(2)因为,则,由题意可得,解得,故,,列表如下:所以,函数的增区间为、,单调递减区间为.当时,;当时,.所以,,.14.(2021·全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【解析】(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即,故,设,由(1)可知不妨设.因为时,,时,,故.先证:,若,必成立.若, 要证:,即证,而,故即证,即证:,其中.设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则,结合,可得:,即:,故,要证:,即证,即证,即证:,即证:,令,则,先证明一个不等式:.设,则,当时,;当时,,故在上为增函数,在上为减函数,故,故成立由上述不等式可得当时,,故恒成立,故在上为减函数,故,故成立,即成立.综上所述,.15.(2021·全国高考真题(文))设函数,其中.(1)讨论的单调性;(2)若的图像与轴没有公共点,求a的取值范围.【答案】(1)的减区间为,增区间为;(2).【解析】(1)函数的定义域为,又,因为,故,当时,;当时,;所以的减区间为,增区间为.(2)因为且的图与轴没有公共点,所以的图象在轴的上方,由(1)中函数的单调性可得,故即.16.(2021·浙江高考真题)设a,b为实数,且,函数(1)求函数的单调区间;(2)若对任意,函数有两个不同的零点,求a的取值范围;(3)当时,证明:对任意,函数有两个不同的零点,满足.(注:是自然对数的底数)【答案】(1)时,在上单调递增;时,函数的单调减区间为,单调增区间为;(2);(3)证明见解析.【解析】(1),①若,则,所以在上单调递增;②若,当时,单调递减,当时,单调递增.综上可得,时,在上单调递增;时,函数的单调减区间为,单调增区间为.(2)有2个不同零点有2个不同解有2个不同的解,令,则,记,记,又,所以时,时,,则在单调递减,单调递增,,.即实数的取值范围是.(3)有2个不同零点,则,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为,较小者为,,注意到函数在区间上单调递减,在区间上单调递增,故,又由知,,要证,只需,且关于的函数在上单调递增,所以只需证,只需证,只需证,,只需证在时为正,由于,故函数单调递增,又,故在时为正,从而题中的不等式得证.17.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围.【答案】(1)上单调递增;上单调递减;(2).【解析】(1)当时,,令得,当时,,当时,,∴函数在上单调递增;上单调递减;(2),设函数,则,令,得,在内,单调递增;在上,单调递减;,又,当趋近于时,趋近于0,所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,所以的取值范围是.18.(2021·全国高考真题(理))设函数,已知是函数的极值点.(1)求a;(2)设函数.证明:.【答案】1;证明见详解【解析】(1)由,,又是函数的极值点,所以,解得;(2)由(1)得,,且,当 时,要证,, ,即证,化简得;同理,当时,要证,, ,即证,化简得;令,再令,则,,令,,当时,,单减,假设能取到,则,故;当时,,单增,假设能取到,则,故;综上所述,在恒成立19.(2021·全国高考真题(理))已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.【答案】(1);(2).【解析】(1)抛物线的焦点为,,所以,与圆上点的距离的最小值为,解得;(2)抛物线的方程为,即,对该函数求导得,设点、、,直线的方程为,即,即,同理可知,直线的方程为,由于点为这两条直线的公共点,则,所以,点、的坐标满足方程,所以,直线的方程为,联立,可得,由韦达定理可得,,所以,,点到直线的距离为,所以,,,由已知可得,所以,当时,的面积取最大值.20.(2020·全国高考真题(理))设函数,曲线在点(,f())处的切线与y轴垂直.(1)求b.(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.【答案】(1);(2)证明见解析【解析】(1)因为,由题意,,即则;(2)由(1)可得,,令,得或;令,得,所以在上单调递减,在,上单调递增,且,若所有零点中存在一个绝对值大于1的零点,则或,即或.当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;当时,,又,由零点存在性定理知在上存在唯一一个零点,即在上存在唯一一个零点,在上不存在零点,此时不存在绝对值不大于1的零点,与题设矛盾;综上,所有零点的绝对值都不大于1.21.(2020·全国高考真题(文))已知函数.(1)讨论的单调性;(2)若有三个零点,求的取值范围.【答案】(1)详见解析;(2).【解析】(1)由题,,当时,恒成立,所以在上单调递增;当时,令,得,令,得,令,得或,所以在上单调递减,在,上单调递增.(2)由(1)知,有三个零点,则,且即,解得,当时,,且,所以在上有唯一一个零点,同理,,所以在上有唯一一个零点,又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.22.(2020·全国高考真题(理))已知函数.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥x3+1,求a的取值范围.【答案】(1)当时,单调递减,当时,单调递增.(2)【解析】(1)当时,,,由于,故单调递增,注意到,故:当时,单调递减,当时,单调递增.(2)由得,,其中,①.当x=0时,不等式为:,显然成立,符合题意;②.当时,分离参数a得,,记,,令,则,,故单调递增,,故函数单调递增,,由可得:恒成立,故当时,,单调递增;当时,,单调递减;因此,,综上可得,实数a的取值范围是.23.(2020·全国高考真题(理))已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:;(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤.【答案】(1)当时,单调递增,当时,单调递减,当时,单调递增.(2)证明见解析;(3)证明见解析.【解析】(1)由函数的解析式可得:,则:,在上的根为:,当时,单调递增,当时,单调递减,当时,单调递增.(2)注意到,故函数是周期为的函数,结合(1)的结论,计算可得:,,,据此可得:,,即.(3)结合(2)的结论有:.第二部分 模拟训练一、单选题1.已知函数,,若方程有2不同的实数解,则实数的取值范围是( )A. B. C. D. 【答案】B【解析】由得,去分母整理得有2不同的实数解,所以或,所以或,设所以,当时,,函数单调递增,当时,,函数单调递减.所以,所以没有实数解.所以方程有两个不同的实数解. 当时,;当时,要方程有两个不同的实数解,必须.故选:B2.已知是定义在上的函数,为的导函数,且满足,则下列结论中正确的是( )A.恒成立 B.恒成立C. D.当时,;当时,【答案】A【解析】设g(x)=(x-1)f(x),所以,所以函数g(x)在R上单调递增,又因为所以x>1时,g(x)>0,x1时,(x-1)f(x)>0,所以f(x)>0;所以x0时,

    相关试卷

    2023高考数学二轮真题与模拟训练26讲 专题19 圆与方程解析:

    这是一份2023高考数学二轮真题与模拟训练26讲 专题19 圆与方程解析

    2023高考数学二轮真题与模拟训练26讲 专题12 数列求和解析:

    这是一份2023高考数学二轮真题与模拟训练26讲 专题12 数列求和解析

    2023高考数学二轮真题与模拟训练26讲 专题26 计数原理与概率统计解析:

    这是一份2023高考数学二轮真题与模拟训练26讲 专题26 计数原理与概率统计解析,共13页。试卷主要包含了已知关于的二次函数.,,得下表等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map