年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编

    2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编第1页
    2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编第2页
    2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编

    展开

    这是一份2023届高三寒假数学二轮微专题45讲 18.外接球问题汇编,共7页。
    外接球专题一.球的截面若用一个平面去截半径为的球,得到的截面是一个圆:(1)若平面过球心,则截面圆是以球心为圆心的圆;(2)若平面不过球心,如图所示,小圆圆心为,则,记,则.例1.(2020全国2卷)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为(    A B C1 D【答案】C注:球的截面性质是我们处理外接球问题的根本思路!例2.(2020全国1卷)已知为球的球面上的三个点,的外接圆,若的面积为,则球的表面积为(    A. B. C. D.【答案】A球的截面性质告诉我们,在计算多面体的外接球时,我们的思路是从平面到空间,先从该多面体的一个面出发,找到其外接圆圆心的位置,进一步,球心与该圆心的连线一定垂直于该平面,这样,就可找到球心和半径.二.三角形的外心: .注:等边三角形的外心,直角三角形的外心,正方形,长方形的外心.三.正方体,长方体的外接球.正长体或长方体的外接球的球心是其体对角线的中点四.正棱柱,直棱柱的外接球.1.基本定义:棱柱:上下底面平行且全等,侧棱平行且相等的封闭几何体叫棱柱.直棱柱:侧棱与底面垂直的棱柱称为直棱柱.正棱柱:底面是正多边形的直棱柱叫做正棱柱.正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱.2.外接球球心:直三棱柱的外接球的球心是上下底面三角形外心连线的中点.正棱柱外接球的球心是上下底面中心连线的中点。3.计算公式:设底面小圆的半径为,棱柱高为,则.三.典例分析例1.(2022新高考1卷)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(       A B C D解析:球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,所以所以正四棱锥的体积所以,当时,,当时,所以当时,正四棱锥的体积取最大值,最大值为,又时,时,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是. 故选:C.例2.(2022全国乙卷)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(       A B C D解析:设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为当且仅当时等号成立,故选:C例3.(2022新高考2卷)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为(       A. B. C. D.解析:设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,故,即,解得符合题意,所以球的表面积为故选:A.三.习题演练1.在平面四边形,现将沿折起使二面角的大小为.四点在同一个球的球面上则球的表面积为(   )A. B. C. D.2.已知三棱锥的顶点都在球O的球面上,且该三棱锥的体积为平面,则球O的体积的最小值为_________.3.如图,已知长方体的底面为正方形,P为棱的中点,且,则四棱锥的外接球的体积为_________________.4.设正四面体的内切球半径为r,外接球半径为R,则___________.5.已知有两个半径为2的球记为,两个半径为3的球记为,这四个球彼此相外切,现有一个球O与这四个球都相内切,则球O的半径为____________.习题答案1.答案:C解析:本题考查三棱锥的外接球、球的表面积.如图所示,设M的中点,连接,依题意,折起后是二面角的平面角,则.易知,四面体的外接球的球心O在平面上,于是点O在底面上的射影是正的中心,设为点Q,而点O在侧面上的射影是M,易得,又,因此,进而,所以球O的表面积为,故选C.2.答案:解析:本题考查空间几何体的体积.由题意得,棱锥的体积,则,当球O的体积最小时,外接圆的半径最小,即最小,在中,由余弦定理和基本不等式得,当且仅当取等号,则,此时外接圆的直径,球O的半径,故球O的体积的最小值为.3.答案解析:解法一  由题意知为正三角形,取的中点M的中心N,连接,过分别作平面与平面的垂线,两垂线交于点O,则点O为四棱锥的外接球球心.由题意知,所以四棱锥的外接球半径,所以四棱锥的外接球的体积.解法二  连接,记,连接,易知四棱锥的外接球的球心O在线段.的中点G,连接,设,球O的半径为R,易知,则,得,则,所以四棱锥的外接球的体积.4.答案:解析:本题考查正四面体的外接球、内切球性质.如图,在正四面体PABC中,DE分别为BCAC的中点,连接ADBE交于点F,则点F为正三角形ABC的外心,连接PF,则底面ABC,且正四面体PABC的外接球球心与内切球球心为同一点,应在线段PF上,记作点O,如图所示.不妨设正四面体PABC的棱长为a,则在中,.底面底面.正四面体PABC的外接球、内切球球心均为O.,且在中有.5.答案:6解析:本题考查球的相切问题.由题意可得.
    如图,取的中点的中点N,连接
    平面同理可证平面
    平面平面球心O在线段MN.
    设球O的半径为R,则.
    解得.
    故球O的半径为6.
      

    相关试卷

    2023届高三寒假数学二轮微专题45讲 25.隐圆问题大盘点:

    这是一份2023届高三寒假数学二轮微专题45讲 25.隐圆问题大盘点,共6页。试卷主要包含了阿波罗尼斯圆,直径所对圆周角,向量隐圆等内容,欢迎下载使用。

    2023届高三寒假数学二轮微专题45讲 24.圆中最值问题:

    这是一份2023届高三寒假数学二轮微专题45讲 24.圆中最值问题,共9页。试卷主要包含了圆中与距离最值有关的常见的结论, 圆内两点,圆上一点等内容,欢迎下载使用。

    2023届高三寒假数学二轮微专题45讲 21.截面问题研究:

    这是一份2023届高三寒假数学二轮微专题45讲 21.截面问题研究,共4页。试卷主要包含了三点中有两点共面等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map