湖北省鄂州市梁子湖区2022-2023学年九年级上学期期末质量监测数学试题(含答案)
展开
这是一份湖北省鄂州市梁子湖区2022-2023学年九年级上学期期末质量监测数学试题(含答案),共13页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
梁子湖区2022年秋期末质量监测九年级数学试题考试时间:120分钟 试卷总分:120分一、单项选择题(本大题共10小题,每小题3分,共30分)1.下列关于x的方程中,是一元二次方程的是( )A. B. C. D.2.“垃圾分类,利国利民”.鄂州市碧石渡镇积极创建生活垃圾分类试点镇,已实现“镇-村-湾”生活垃圾分类全覆盖.以下垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( ) A.可回收物 B.有害垃圾 C.厨余垃圾 D.其花垃圾3.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则( )A.30° B.45° C.60° D.904.将抛物线平移得到抛物线,则这个平移过程是( )A.向上平移1个单位长度 B.向下平移1个单位长度C.向左平移1个单位长度 D.向右平移1个单位长度5.近年来,随着经济建设的蓬勃发展,鄂州市花大力气先后修成了江滩公园、西山公园、洋澜湖湿地公园、青天湖公园等各种主题公园,给广大市民提供了外出郊游的良好环境.据有关部门统计,2019年郊游人数约为20万人次,2021年郊游人数约为30万人次,设郊游人数年平均增长率为x,则下列方程中正确的是( )A. B.C. D.6.如图,正比例函数与反比例函数的图象交于A,B两点,其中,当的函数值大于的函数值时,x的取值范围是( )A. B.C.或 D.或7.如图,在矩形ABCD中,点A在x轴上,点B的坐标为,且C,D两点在函数的图象上.若在矩形ABCD内任取一点,则此点取自阴影部分的概率是( )A. B. C. D.8.如图所示的圆形暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船S不进入暗礁区,那么S对两灯塔A,B的视角必须( )A.大于60° B.小于60° C.大于30° D.小于30°9.如图,已知二次函数的图象交x轴于,对称轴为直线.下列结论:①;②;③;④若,是图象上的两点,则;⑤若,则.其中正确结论的个数是( )A.2 B.3 C.4 D.510.正三角形ABC的边长为6,E是边AC上一动点,A,D两点关于直线BE对称,连接DC并延长交直线BE于F,连接AF,在点E运动过程中,的最大值是( )A.6 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.若关于x的方程的一个根为3,则k的值为__________.12.现有某种产品100件,其中5件次品,从中随意抽出一件,恰好抽到次品的概率是__________.13.如图,PA,PB是的切线,A,B为切点,AC是的直径,若,则的度数是__________.14.如图,AB是的直径,AC是弦,,.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是__________.15.如图,一次函数的图象与y轴交于点,与反比例函数的图象交于点,以BD为对角线作矩形ABCD,使顶点A,C落在x轴上(点A在点C的右边),BD与AC交于点E,则__________.16.如图,正方形ABCD中,E为AB上一点;于点F,已知,过点C,D,F的与边AD交于点G,若的半径是5,则__________.三、解答题(本大题共8小题,共72分)17.(本题满分8分)解下列方程:(1)(4分); (2)(4分).18.(本题满分8分)某校组织读书征文比赛,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)(2分)求本次比赛获奖的总人数,并补全条形统计图;(2)(2分)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)(4分)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19.(本题满分8分)关于x的方程有两个实数根,.(1)(4分)求实数k的取值范围;(2)(4分)若,满足,求k的值.20.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,的顶点都在格点上.(1)(3分)将向右平移6个单位长度得到,请画出;(2)(3分)画出与关于点O对称的;(3)(2分)若将绕某一点旋转可得到,请直接写出旋转过程中点A到点所经过的路径长度.21.(本题满分9分)如图,AB为的直径,PD切于点C,与BA的延长线交于点D,交PO的延长线于点E,连接OC,PB,已知,,.(1)(3分)求证:PB是的切线;(2)(3分)求的半径;(3)(3分)连接BE,求BE的长.22.(本题满分9分)某商店出售一款商品,经市场调查,该商品的日销量y(件)与销售单价x(元)之间满足一次函数关系,关于该商品的销售单价、日销量、日销售利润的部分对应数据如下表.【注:日销售利润日销量(销售单价进价)】销售单价(元)757882日销量(件)15012080日销售利润(元)52503360(1)(3分)根据下表信息填空:该商品的进价是__________元/件,表中a的值是__________,y与x之间的函数关系式是__________;(2)(3分)求该商品日销售利润的最大值;(3)(3分)由于某种原因,该商品进价降低了m元/件,商店规定,在今后的销售中,该商品的销售单价不能低于68元,日销量与销售单价之间仍满足(1)中的函数关系,若日销售最大利润为6600元,求m的值.23.(本题满分10分)请仔细阅读以下材料:定理一:一般地,如图,四边形ABCD中,如果连接两条对角线后形成的,则A,B,C,D四点共圆.我们由定理可以进一步得出结论:,,.定理二:直角三角形斜边上的中线等于斜边的一半.温馨提示:下面问题的关键地方或许能够用到上述定理,如果用到,请直接运用相关结论;如果你有自己更好的做法,那就以自己的做法为主,只要正确,一样得分.探究问题:如图,在△ABC和△EFC中,,,,连接BF,AE交于点D,BP交AC于点H,连接CD.(1)(3分)求证;(2)(4分)请直接写出___________度,___________度;(3)(3分)若,求证.24.(本题满分12分)(1)(4分)如图1,在平面直角坐标系中,有两点,,过A,B两点分别向x轴、y轴作垂线,垂足分别为C,D,E,F,直线AF与BD相交于点G,则线段,,所以……①,我们把①式称作A,B两点间的距离公式.请根据此公式,求出,两点之间的距离;(2)(4分)如图2,平面直角坐标系中,的三个顶点都在抛物线上,且轴,,过点C作,垂足为E,请直接运用第一问的结论求出CE的长;(3)(4分)如图3,的三个顶点都在抛物线上,且直角顶点C在该抛物线的顶点处,设直线AB的解析式为,试证明该直线必过一定点. 梁子湖区2022年秋期末质量监测九年级数学答案一、选择题1.B 2.B 3.C 4.C 5.C 6.D 7.C 8.D 9.B 10.C二、填空题11.1 12.(或5%均可) 13.50° 14.1/2 15. 16.6三、解答题17.解:(1)∵,∴,∴或;4分(2)∵,∴,∴,∴或.8分答案正确均给分18.(1)本次比赛获奖的总人数为(人),1分所以二等奖人数为(人).图略.2分(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为;4分∵从四人中随机抽取两人有12种等可能的结果,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.6分树状图略.8分19.(1)根据题意得,解得;4分(2)根据题意得,,∴,,∵,∴,∴,整理得,解得,,∵,∴.8分20.解:(1)如图,即为所求;3分(2)如图,即为所求;6分(3)根据图形可知,旋转中心的坐标为.所以点A的路径是.8分21.(1)略.3分(2)解:在中,,,根据勾股定理得:,∵PD与PB都为的切线,∴,∴;在中,设,则有,根据勾股定理得:,解得:,则圆的半径为3.6分(3)延长PB、DE相交于点F,∵PD与PB都为的切线,∴OP平分,∴,∵,∴,又∵,∴(ASA),∴,,∴,在中,,∴.9分注,其他做法只要正确同样给分22.解:(1)设该产品的成本单价是n元,根据题意,得:,解得..设日销售量(件)与销售单价(元)之间满足的一次函数解析式为,把,代入解得一次函数解析式为.答:商品的进价为40元、为4560、与之间的函数关系式为;3分(2)根据题意,得:.答:该商品日销售利润的最大值为6250元;6分(3)设利润为元,根据题意可得:,∵销售单价不低于68元,即,∴,对称轴为,∵,∴,且开口向下,∴随的增大而减小,∴当时,有最大值为6600,∴,∴.答:的值为2.9分23.(1)略.3分(2)90°、45°.7分(3)略证:由定理一得,取AH中点G,连接DG则由定理2得,又由(1)得∴∴∴.10分其他做法只要正确同样给分24.解(1).4分(2)略解:由对称性可设,,,则,从而 ①,,∴化简得.②联立①、②得,或0,又因为∴、即.8分(3)求得C(0,4),9分设,由两点间距离公式可得,,,又由勾股定理得,所以,化简得 或0∵∴,联立、得,的两个根分别是m,n由根与系数的关系得:所以,∴直线必过点(0,3).12分注:其他做法只要正确都可给分
相关试卷
这是一份湖北省鄂州市梁子湖区2022-2023学年九年级上学期期末质量监测数学试题,共6页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省鄂州市梁子湖区2022-2023学年九年级上学期期末质量监测数学试题,共6页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省鄂州市梁子湖区2022-2023学年七年级上学期期末质量监测数学试题(含答案),共9页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。