|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版)
    立即下载
    加入资料篮
    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版)01
    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版)02
    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版)

    展开
    这是一份2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省福州第三中学高一上学期期中阶段性居家检测数学试题

     

    一、单选题

    1.函数的定义域为(    

    A B C D

    【答案】C

    【分析】由二次根式性质和分式性质直接求解.

    【详解】由题可知,,解得.

    故选:C

    2.若,则集合A的非空真子集的个数是(    

    A16 B14 C8 D6

    【答案】B

    【分析】化简集合,然后根据子集的概念即得.

    【详解】因为

    所以集合A的非空真子集的个数是.

    故选:B.

    3.我国著名数学家华罗庚曾说过:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数的大致图象是(    

    A B

    C D

    【答案】A

    【分析】先研究函数的奇偶性,排除选项BD,再通过计算确定答案.

    【详解】解:设

    所以函数是偶函数,其图象关于轴对称,排除选项BD.

    时,,所以排除C,选择A.

    故选:A

    42021511日,国家统计局发布第七次全国人口普查公报(第二号),公报显示截止2021511日,全国总人口数为人.如果到2049511日全国总人口数超过16亿,那么从2021511日到2049511日的年平均增长率应不低于(    

    A B C D

    【答案】D

    【分析】由题可得,进而即得.

    【详解】设增长率为

    所以,即.

    故选:D.

    5.已知,且,则的最小值是(    

     

    A10 B15 C18 D23

    【答案】C

    【分析】把已知式变形为,然后由基本不等式求得最小值.

    【详解】x>0y>0,且,得

    所以

    当且仅当,即时等号成立,

    所以的最小值是18

    故选:C

    6.已知函数R上的减函数,则实数a的取值范围是(    

    A B C D

    【答案】B

    【分析】根据一次函数、反比例函数的性质以及分段函数的单调性得到关于的不等式组,解出即可.

    【详解】若函数R上的减函数,

    解得,

    即实数a的取值范围是.

    故选:B

    7.若,则(    

    A B

    C D

    【答案】C

    【分析】根据幂函数及指数函数的单调性判断即得.

    【详解】因为函数上单调递增,

    所以,即

    又函数在定义域上单调递减,

    所以,而,所以

    所以.

    故选:C.

    8.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的称号,用其名字命名的高斯函数为:设,用表示不超过x的最大整数,则称为高斯函数,例如:,已知函数,则函数的值域为(    

    A B C D

    【答案】D

    【分析】根据换元法以及反比例函数的单调性即可求解的值域,根据高斯函数的定义即可求解的值域.

    【详解】由令,故

    由于单调递增,故单调递增,故当时,

    ,进而

    故选:D

     

    二、多选题

    9.下列命题中,正确的是(    

    A.若,则

    B.若,则

    C.若,则

    D.若,则

    【答案】CD

    【分析】利用特值可判断AB,利用作差法可判断C,根据不等式性质可可判断D.

    【详解】对于A选项,当时,,故A错误;

    对于B选项,当时,,故B错误;

    对于C选项,若,所以,故C正确;

    对于D选项,若,则

    根据不等式性质得到,故D正确.

    故选:CD.

    10.已知函数,若对于区间上的任意两个不相等的实数,都有,则实数的取值范围可以是(     

    A B C D

    【答案】AD

    【解析】对于区间上的任意两个不相等的实数,都有,分析即在区间上单调,利用二次函数的单调区间判断.

    【详解】二次函数图象的对称轴为直线

    任意,都有

    在区间上是单调函数,

    ,即实数的取值范围为.

    故选:AD

    【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证.

    2)二次函数的单调性要看开口方向、对称轴与区间的关系.

    11.下列命题中正确的是(    

    A.命题:的否定是

    B.函数)恒过定点

    C.已知函数的定义域为,则函数的定义域为

    D.函数的值域是,则实数m的范围是

    【答案】BCD

    【分析】根据全称量词命题的否定、指数函数的性质、函数定义域、函数值域等知识对选项进行分析,由此确定正确选项.

    【详解】A选项,根据全称量词命题的否定的知识可知:的否定是,故A错误;

    B选项,因为,由,可得恒过定点,故B正确;

    C选项,函数的定义域为

    所以的定义域为,所以,即函数 的定义域为,故C正确;

    D选项,函数的值域是,当时,的值域为,符合题意,

    时,则,解得

    综上所述,的取值范围是,故D正确.

    故选:BCD.

    12.当一个非空数集G满足如果,则,且时,时,我们就称G是一个数域,以下关于数域的说法:①0是任何数域的元素;若数域G有非零元素,则集合是一个数域;有理数集是一个数域,无理数集不是一个数域.其中正确的选项有(    

    A①② B②③ C③④ D④⑤

    【答案】AD

    【分析】结合数域概念举例可依次验证.

    【详解】,设,有,即,故正确;

    ,设,则有,即,若,则,则,则,故正确;

    ,当时,,所以不是一个数域,故错误;

    ,因为,则,且时,,故正确;

    ,若,故无理数集不是一个数域,正确.

    故选:AD

     

    三、填空题

    13.若不等式的解集为,则的值为____________

    【答案】

    【分析】根据一元二次不等式的解集可得方程组求得,即得.

    【详解】因为不等式的解集为

    解得

    .

    故答案为:.

    14.偶函数在区间上单调递减,则满足x的取值范围是____________

    【答案】

    【分析】由偶函数图象特征转化为绝对值不等式可求解.

    【详解】因为偶函数在区间上单调递减,故,解得.

    故答案为:

    15.函数的单调递减区间是____________

    【答案】

    【分析】结合复合函数单调性求解即可.

    【详解】对于在定义域上为减函数;

    对于,首先满足,即,函数在上单减,在单增;

    根据同增异减性质,的单调递减区间是.

    故答案为:

     

    四、双空题

    16.已知,函数.①,则之值为___________若不等式对任意都成立,则的取值范围是___________

    【答案】         

    【分析】根据题意,分类讨论当时,代入分段函数,分别解方程即可;

    将不等式对任意都成立,转化为恒成立且恒成立,其中对于恒成立,利用一次函数的单调性求解,对于恒成立,利用参变分离转化求最值求解,取交集后即可得出答案.

    【详解】解:由题可知,

    时,则

    解得:

    时,则

    解得:

    综上得:.

    由题可知,

    由不等式对任意都成立,

    所以有恒成立且恒成立,

    对于恒成立时,即恒成立,

    ,解得:

    对于恒成立时,即恒成立,

    时,明显成立,

    时,恒成立,又,解得:

    综上得:.

    所以的取值范围是:

    故答案为:.

    【点睛】本题考查由分段函数求参数值和通过不等式恒成立问题求参数范围,利用一次函数的性质和参变分离求最值问题时关键,考查分类讨论思想.

     

    五、解答题

    17.(1)求值:

    2)已知:,求的值.

    【答案】1;(2.

    【分析】1)根据根式化简及指数幂的运算法则计算即得;

    2)根据指数幂的运算可得进而即得.

    【详解】1)原式

    2)因为

    所以,即

    所以,即

    所以.

    18.已知全集,命题p:实数x满足集合,命题q:实数x满足集合

    (1),求如图所示阴影部分表示的集合;

    (2)pq的必要不充分条件,求实数m的取值范围.

    【答案】(1)

    (2)

     

    【分析】1)先化简集合,再求即可;

    2)将问题等价转化为,再建立不等式组即可求解.

    【详解】1)由,故,当时,

    ,图中阴影部分为

    2)若pq的必要不充分条件,则等价于

    ,则,解得

    ,则满足,解得

    综上所述,

    19.己知函数.

    (1)画出函数的图象,并写出函数在区间上的值域;

    (2)若函数,求函数上最大值.

    【答案】(1)图象见解析;

    (2).

     

    【分析】1)根据分段函数解析式即可画出,计算出端点值,结合图象即可得出值域;

    2)可得,分类讨论结合二次函数的性质即得.

    【详解】1)由题可得,可得函数的图象,

    由图象可知函数在区间上的值域为

    2)当时,

    配方得

    ,即时,

    ,即时,

    综上,.

    20.已知函数

    (1)讨论函数上的单调性,并用定义加以证明:

    (2)若函数在区间上的值域为,求的取值范围.

    【答案】(1)时,单调递减;时,单调递增

    (2)

     

    【分析】1)结合基本不等式和对勾函数性质可直接判断单调性,由定义证明即可;

    2)由函数的单调性分段讨论即可求解.

    【详解】1)由,当且仅当时取等号,故可判断单减,上单增;

    证明如下:设

    时,,故,函数为减函数;

    时,,故,函数为增函数;

    2,当时,单减;时,单增,

    故令,解得4

    故当时,

    时,

    综上

     

    21.为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为,月租费为x万元;每间肉食水产类店面的建造面积为,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%

    (1)两类店面间数的建造方案有多少种?

    (2)市场建成后所有店面全部租出,为保证任何一种建造方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x的最大值为多少万元?

    【答案】(1)16种;

    (2)1万元.

     

    【分析】1)设蔬菜水果类和肉食水产类店分别为,根据条件建立关系式,进而确定解的个数;

    2)根据条件建立不等式,根据不等式恒成立求的最大值即可.

    【详解】1)设蔬菜水果类和肉食水产类店分别为,

    由题意知,

    化简得:

    所以

    解得

    所以两类店面间数的建造方案有种;

    2)由题意知

    恒成立,,

    的最大值为1万元.

    22.已知定义在R的偶函数和奇函数满足:

    (1),并证明:

    (2)若存在,使得不等式成立,求实数a的取值范围.

    【答案】(1);证明见详解

    (2)

     

    【分析】1)将代换为,再结合奇偶性解方程即可求出,代入解析式可证

    2)不等式可化为,令,原不等式等价于,分离参数,结合基本不等式即可求解.

    【详解】1)因为偶函数和奇函数满足:

    代换为,可得

    由函数的奇偶性可得,即

    联立①②可得:

    证明:

    所以

    2,不妨设

    易判断为增函数,故时,

    分离参数可得,由题干条件可等价转化为

    ,当且仅当时取最小值,故

    所以.

     

    相关试卷

    福建省福州第三中学2022-2023学年高一上学期期中检测数学试题: 这是一份福建省福州第三中学2022-2023学年高一上学期期中检测数学试题,共6页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省福州市高一上学期期末质量检测数学试题(解析版): 这是一份2022-2023学年福建省福州市高一上学期期末质量检测数学试题(解析版),共19页。试卷主要包含了 函数的图象大致为, 已知函数,若,则的值为, 设,,,则, 若,,则等内容,欢迎下载使用。

    2022-2023学年福建省福州第一中学高一上学期期末质量检测数学试题含解析: 这是一份2022-2023学年福建省福州第一中学高一上学期期末质量检测数学试题含解析,共30页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map