所属成套资源:全套北师大版高中数学必修第二册第一章三角函数+第二章平面向量及其应用作业含答案
高中数学北师大版 (2019)必修 第二册2.1 角的概念推广练习
展开
这是一份高中数学北师大版 (2019)必修 第二册2.1 角的概念推广练习,共11页。
【优质】2.1 角的概念推广练习一.填空题1.若扇形的圆心角为,半径为2,则扇形的面积为______.2.若劣弧所在圆的半径为,所对的圆心角为,若扇形的周长为,则半径为________,扇形的面积为_________.3.已知扇形的周长为4,面积为1,则扇形的圆心角为__________;4.终边在轴上的角的集合是____________.5.扇形的周长是16,圆心角是2 rad,则扇形的面积是________.6.已知一扇形的面积是8cm2,周长是12cm,则该扇形的圆心角α(0<α<π)的弧度数是_______7.圆心角为,弧长为2的扇形的面积为______.8.终边在直线上的角的集合是______________。9.已知扇形的周长为40,当它的圆心角为____时,扇形的面积最大,最大面积为____.10.已知某扇形的圆心角为,其弦长为,则该扇形的面积为________.11.在半径为6的圆中,某扇形的弧所对的圆心角为,则该扇形的周长是___________,该扇形的面积是___________.12.已知一个扇形的周长为4,则扇形面积的最大值为______.13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是______.14.已知一扇形的半径为2,弧长为π,则该扇形的圆心角所对的弦长是_________.15.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角为______;如果小轮的转速为转/分,大轮的半径为,则大轮周上一点每秒转过的弧长为______.
参考答案与试题解析1.【答案】【解析】利用扇形面积公式可求出答案.【详解】由题意,扇形的面积为.故答案为:.【点睛】本题考查了扇形的面积的计算,考查了学生的计算能力,属于基础题.2.【答案】. . 【解析】直接根据扇形的弧长和面积公式求解即可.【详解】解:由题意得:,∴,∴扇形的面积,故答案为:,.【点睛】本题主要考查弧度制下的扇形的弧长和面积公式,属于基础题.3.【答案】2【解析】根据扇形的弧长公式: ,面积公式:即可求解。【详解】设扇形半径为,圆心角为,则 即故答案为:2【点睛】本题考查了扇形的弧长公式.面积公式,属于基础题。4.【答案】【解析】由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,那么利用,展开统一形式,得到,故答案为考点:本试题主要是考查了终边相同的角的集合的表示。点评:理解终边相同的角的集合的表示,同时注意直线角的集合为,表示在同一条直线上。而射线角为,表示在同一条射线上。5.【答案】16【解析】先设扇形的弧长为,半径为,结合题意有,再利用扇形的面积是求解即可.【详解】解:不妨设扇形的弧长为,半径为, 又扇形的周长是16,圆心角是2 rad,则,解得:,则扇形的面积是,故答案为:.【点睛】本题考查了扇形的弧长公式及面积公式,重点考查了运算能力,属基础题.6.【答案】1【解析】设半径为,则,,可解出对答案.【详解】设半径为,则,,由有代入有:,解得 或,当时,,当时,,又,所以.故答案为:【点睛】本题考查扇形的面积,弧度制公式等,属于容易题.7.【答案】【解析】先用弧度制表示圆心角,再利用弧长公式求得半径,进而利用面积公式求解即可【详解】由题,,由弧长公式,即,得半径,故扇形的面积公式故答案为:【点睛】本题考查扇形面积,考查角度制与弧度制的转化,考查运算能力8.【答案】【解析】直线为平分一三象限的直线,取第一象限的锐角,表示成通式即可,需注意是终边在同一直线上【详解】直线为平分一三象限的直线,取第一象限的锐角,则与终边在同一条直线上的角的集合为【点睛】本题考查与角终边在同一条直线上的角的集合的表示方法,可记为,本题易错解成9.【答案】2 100 【解析】设半径为,用表示出扇形面积,然后求得最大值.【详解】设扇形半径为,则其弧长为,,∴.∴,∴时,.此时圆心角为.故答案为:2;100.【点睛】本题考查扇形的面积公式,属于基础题.10.【答案】【解析】由已知可求扇形的半径,进而根据扇形的面积公式即可计算得解.【详解】设扇形的圆心角大小为,半径为,则,可得,可得,可得扇形的面积为.故答案为:.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想,意在考查学生对这些知识的理解掌握水平,属于基础题.11.【答案】 【解析】扇形的周长:,面积:,代入计算即可。【详解】因为扇形弧长:则周长扇形面积:故答案为:,【点睛】此题考查扇形的周长和面积公式,属于简单题目。12.【答案】1【解析】表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长, ,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式.二次函数的单调性,考查了计算能力,属于基础题.13.【答案】1【解析】由扇形的面积公式,代入已知条件,即可求得结果。【详解】解:根据扇形面积公式得,解得,故答案为:1.【点睛】本题考查扇形的面积公式,是基础题。14.【答案】【解析】首先计算出圆心角,然后根据勾股定理求得圆心角所对的弦长.【详解】设扇形的弧长为l,圆心角为θ,由,得,即,故所对的弦长是.故答案为:【点睛】本小题主要考查扇形弧长.弦长有关计算,属于基础题.15.【答案】 【解析】可设大齿轮和小齿轮旋转的角速度分别为.,根据两齿轮转动时转过的齿轮数相等可求出的值,进而可求出结果.【详解】设大齿轮和小齿轮旋转的角速度分别为.,在转动时,两齿轮转过的齿轮数相等,当小轮转动两周时,转过的齿轮数为,则大齿轮转动的角为.由题意可知,,(转/秒),所以,大轮周上一点每秒转过的弧长为.故答案为:;.【点睛】本题考查扇形圆心角与弧长的计算,解题时要明确两齿轮旋转时转过的齿轮数相等,考查分析问题和解决问题的能力,属于中等题.
相关试卷
这是一份高中数学北师大版 (2019)必修 第二册2.1 角的概念推广精练,共10页。试卷主要包含了是第_______象限的角等内容,欢迎下载使用。
这是一份北师大版 (2019)必修 第二册第一章 三角函数2 任意角2.1 角的概念推广一课一练,共11页。
这是一份高中数学北师大版 (2019)必修 第二册2.1 角的概念推广巩固练习,共10页。