所属成套资源:【精讲精练】最新中考数学浙教版新中考考点梳理
2022-2023 数学浙教版新中考精讲精练 考点25与圆有关的计算
展开
这是一份2022-2023 数学浙教版新中考精讲精练 考点25与圆有关的计算,文件包含2022-2023数学浙教版新中考精讲精练考点25与圆有关的计算解析版docx、2022-2023数学浙教版新中考精讲精练考点25与圆有关的计算原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
考点25与圆有关的计算考点总结1.圆的周长公式:C=2πR(半径为R).圆的面积公式:S=πR2(半径为R).2.在半径为R的圆中,n°的圆心角所对的弧长l的计算公式为:l=.在半径为R的圆中,n°的圆心角所对的扇形(弧长为l)面积的计算公式为:S扇形==lR.3.圆柱的侧面展开图是矩形,这个矩形的长和宽分别是底面圆的周长和圆柱的高.圆柱侧面积公式:S圆柱侧=2πrh;圆柱全面积公式:S圆柱全=2πrh+2πr2(其中圆柱的底面半径为r,高为h).4.圆锥的侧面积和全面积:圆锥的侧面展开图是一个扇形,若圆锥的母线长为l,底面半径为r,则这个扇形的半径为l,扇形的弧长为2πr.(1)圆锥的侧面积公式:S圆锥侧=πrl.(2)圆锥的全面积公式:S圆锥全=πr2+πrl. (3)圆锥侧面展开图扇形的圆心角度数的计算公式:θ=·360°.5.正多边形的中心:正多边形的外接圆的圆心.外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.作相等的圆心角就可以等分圆周,从而得到相应正多边形.6.不规则图形面积的计算求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则的图形的面积转化为规则图形的面积.常用的方法有:(1)直接用公式求解.(2)将所求面积分割后,利用规则图形的面积求解.(3)将阴影中某些图形等积变形后移位,重组成规则图形求解.(4)将所求面积分割后,利用旋转,将部分阴影图形移位后,组成规则图形求解. 真题演练 一、单选题1.(2021·浙江衢州·中考真题)已知扇形的半径为6,圆心角为.则它的面积是( )A. B. C. D.【答案】D【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可.【详解】解:.故选:D2.(2021·浙江·中考真题)如图,已知在矩形中,,点是边上的一个动点,连结,点关于直线的对称点为,当点运动时,点也随之运动.若点从点运动到点,则线段扫过的区域的面积是( )A. B. C. D.【答案】B【分析】先判断出点Q在以BC为直径的圆弧上运动,再判断出点C1在以B为圆心,BC为直径的圆弧上运动,找到当点P与点A重合时,点P与点D重合时,点C1运动的位置,利用扇形的面积公式及三角形的面积公式求解即可.【详解】解:设BP与CC1相交于Q,则∠BQC=90°,∴当点P在线段AD运动时,点Q在以BC为直径的圆弧上运动,延长CB到E,使BE=BC,连接EC,∵C、C1关于PB对称,∴∠EC1C=∠BQC=90°,∴点C1在以B为圆心,BC为直径的圆弧上运动,当点P与点A重合时,点C1与点E重合,当点P与点D重合时,点C1与点F重合,此时,,∴∠PBC=30°,∴∠FBP=∠PBC=30°,CQ=,BQ=,∴∠FBE=180°-30°-30°=120°,,线段扫过的区域的面积是.故选:B.3.(2021·浙江瓯海·三模)如图,已知扇形OAB的半径为6cm,圆心角的度数为120°,若将OA,OB重合后围成一圆锥侧面,那么圆锥的底面半径为( )A.2cm B.3cm C.6cm D.2cm【答案】A【分析】这个圆锥的底面圆的半径是,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到,然后解关于r的方程即可.【详解】解:设这个圆锥的底面圆的半径为,根据题意得,解得,即这个圆锥的底面圆的半径是2cm,故选:A.4.(2021·浙江衢江·一模)如图,正方形ABCD的边长为8,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A. B.2 C. D.1【答案】D【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【详解】解:设圆锥的底面圆的半径为r,根据题意可知:AD=AE=8,∠DAE=45°,底面圆的周长等于弧长:∴2πr= ,解得r=1.所以,该圆锥的底面圆的半径是1故选:D.5.(2021·浙江上城·二模)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.把△ABC分别绕直线AB,BC和AC旋转一周,所得几何体的表面积分别记作S1,S2,S3,则表面积最大的是( )A.S1 B.S2 C.S3 D.无法确定【答案】A【分析】根据△ABC分别绕直线AB,BC和AC旋转一周,可以分别得到一个圆锥、一个圆锥和两个共底面的圆锥组合,再根据圆锥的表面积计算公式:圆锥的表面积=底面积+圆锥的侧面积分别计算即可,最后根据结果即可比较大小.【详解】解:,,,.绕直线旋转一周,所得几何体为圆锥,底面半径为,此圆锥的表面积为底面圆面积加扇形表面积,即;绕直线旋转一周,所得几何体为圆锥,底面半径为,此圆锥的表面积为底面圆面积加扇形表面积,即;绕直线旋转一周,所得几何体为两个共底面的圆锥,底面半径为,此圆锥的表面积为两个扇形表面积之和,即..故选:A.6.(2021·浙江椒江·一模)如图,内接于⊙O,.若,则的长为( )A. B. C. D.【答案】B【分析】连接,,可证得是等腰直角三角形,求出,利用弧长公式即可求得结果.【详解】解:连接,.,,,,的长为,故选:B.7.(2021·浙江兰溪·一模)用一张半径为的半圆形纸片做一个圆锥的侧面,则应该配一个面积为多少的圆做它的底面( )A. B. C. D.【答案】B【分析】由题意,该圆锥底面圆的周长即为半圆形纸片的弧长,由此可先求出半圆形的弧长,从而得到底面圆的半径,即可求出面积.【详解】半径为的半圆形纸片的弧长为:,即:底面圆的周长应为,∴底面圆的半径为:,∴底面圆的面积为:,故选:B.8.(2021·浙江定海·一模)如图,六边形是正六边形,点是边的中点,,分别与交于点,,则的值为( ).A. B. C. D.【答案】D【分析】设正六边形的边长为a,MN是△PCD的中位线,求出△PBM和△PCD的面积即可.【详解】解:设正六边形的边长为a,连接AC交BE于H点,如下图所示:正六边形六边均相等,且每个内角为120°,∴△ABC为30°,30°,120°等腰三角形,∴BE⊥AC,且,且,∵AF∥CD,P为AF上一点,∴,MN为△PCD的中位线,∴,由正六边形的对称性可知:,∴,∴,∴,故选:D.9.(2021·浙江东阳·一模)将正方形纸片按图①方式依次对折得图②的,点D是边上一点,沿线段剪开,展开后得到一个正八边形,则点D应满足( )A. B. C. D.【答案】B【分析】根据折叠的性质易得∠BAC=45°,然后由正多边形的性质可进行排除选项.【详解】解:由题意得:∠BAC=45°,∴沿线段BD剪开,展开图即为八边形,若使展开后得到的是一个正八边形,则需满足以点A为圆心,AD、AB为半径即可,∴;故选B.10.(2021·浙江绍兴·一模)设边长为的等边三角形的高、内切圆的半径、外接圆的半径分别为、、,则下列结论不正确的是( )A. B. C. D.【答案】C【分析】将图形标记各点,即可从图中看出长度关系证明A正确,再由构造的直角三角形和30°特殊角证明B正确,利用勾股定理求出r和R,即可判断C、D.【详解】如图所示,标上各点,AO为R,OB为r,AB为h,从图象可以得出AB=AO+OB,即,A正确;∵三角形为等边三角形,∴∠CAO=30°,根据垂径定理可知∠ACO=90°,∴AO=2OC,即R=2r,B正确;在Rt△ACO中,利用勾股定理可得:AO2=AC2+OC2,即,由B中关系可得:,解得,则,所以C错误,D正确;故选:C. 二、填空题11.(2021·浙江衢州·中考真题)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.【答案】72°【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.12.(2021·浙江台州·中考真题)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π)
【答案】【分析】直接利用弧长公式即可求解.【详解】解:,故答案为:.13.(2021·浙江宁波·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中的长为________.(结果保留)【答案】【分析】连接OC、OD,利用切线的性质得到,根据四边形的内角和求得,再利用弧长公式求得答案.【详解】连接OC、OD,∵分别与相切于点C,D,∴,∵,, ∴,∴的长=(cm),故答案为:..14.(2021·浙江温州·中考真题)若扇形的圆心角为,半径为17,则扇形的弧长为______.【答案】【分析】根据弧长公式l=求解即可.【详解】∵扇形的圆心角为,半径为17,∴扇形的弧长==.故答案为:15.(2021·浙江嘉兴·中考真题)如图,在中,,,,点从点出发沿方向运动,到达点B时停止运动,连结,点关于直线的对称点为,连接A′C,.在运动过程中,点到直线距离的最大值是_______;点到达点时,线段扫过的面积为___________.【答案】 【分析】(1)通过分析点A′的运动轨迹,是以点C为圆心,CA为半径的圆上,从而求解;(2)画出相应的图形,从而利用扇形面积和三角形面积公式计算求解【详解】解:(1)由题意可得点A′的运动轨迹是以点C为圆心,CA为半径的圆上,∵点从点出发沿方向运动,到达点B时停止运动,,点关于直线的对称点为,∴∠ACA′最大为90°当CA′⊥AB时,点A′到直线AB的距离最大,如图过点B作BE⊥AC∵,,,∴在Rt△ABE中,BE=1,AE=,在Rt△BCE中,BE=CE=1∴CA′=CA=又∵CA′⊥AB∴在Rt△ACF中,CF=∴A′F=A′C-CF=即点到直线距离的最大值是;点到达点时,线段扫过的面积为:==故答案为:; 三、解答题16.(2021·浙江金华·中考真题)在扇形中,半径,点P在OA上,连结PB,将沿PB折叠得到.(1)如图1,若,且与所在的圆相切于点B.①求的度数.②求AP的长.(2)如图2,与相交于点D,若点D为的中点,且,求的长.【答案】(1)①60°;②;(2)【分析】(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求的长,先连接,先在中,求出;再在中,求出即可得到答案;(2)要求的长,扇形的半径已知,就转化成求的度数,连接,通过条件找到角之间的等量关系,再根据三角形内角和为,建立等式求出,最后利用弧长的计算公式进行计算.【详解】解:(1)①如图1,为圆的切线.由题意可得,,.,②如图1,连结,交BP于点Q.则有.在中,.在中,,. (2)如图2.连结OD.设.∵点D为的中点..由题意可得,.又,,解得..17.(2021·浙江嘉兴·中考真题)一酒精消毒瓶如图1,为喷嘴,为按压柄,为伸缩连杆,和为导管,其示意图如图2,,,.当按压柄按压到底时,转动到,此时(如图3).(1)求点转动到点的路径长;(2)求点到直线的距离(结果精确到).(参考数据:,,,,,)
【答案】(1);(2)点到直线的距离约为7.3cm.【分析】(1)根据题目中的条件,首先由,,求出,再继续求出,点转动到点的路径长,是以为半径,为圆心的圆的周长的一部分,根据占的比例来求出路径;(2)求点到直线的距离,实际上是过点作的垂线交于某点,连接两点所确定的距离即为所求,但这样做不好求解.于是把距离拆成两个部分,放在两个直角三角形中,分别利用直角三角形中锐角三角函数知识求出每段的距离,再求和即为所求.【详解】解:(1)如图,∵,,∴.∵,∴.又∵,∴点转动到点的路径长.(2)如图,过点作于点,过点作于点.在中, .在中,.∴.又∵,∴点到直线的距离约为7.3cm.18.(2021·浙江丽水·中考真题)如图,在中,,以为直径的半圆O交于点D,过点D作半圆O的切线,交于点E.(1)求证:;(2)若,求的长.【答案】(1)见解析;(2)【分析】(1)连结,利用圆的切线性质,间接证明:,再根据条件中:且,即能证明:;(2)由(1)可以证明:为直角三角形,由勾股定求出的长,求出,可得到的度数,从而说明为等边三角形,再根据边之间的关系及弦长所对应的圆周角及圆心角之间的关系,求出,半径,最后根据弧长公式即可求解.【详解】解:(1)证明:如图,连结. 与相切,.是圆的直径,.....(2)由(1)可知,,,,,是等边三角形., ,.
相关试卷
这是一份2022-2023 数学浙教版新中考精讲精练 考点32概率及有关计算,文件包含2022-2023数学浙教版新中考精讲精练考点32概率及有关计算解析版docx、2022-2023数学浙教版新中考精讲精练考点32概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份2022-2023 数学浙教版新中考精讲精练 考点24与圆有关的位置关系,文件包含2022-2023数学浙教版新中考精讲精练考点24与圆有关的位置关系解析版docx、2022-2023数学浙教版新中考精讲精练考点24与圆有关的位置关系原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份2022-2023 数学浙教版新中考精讲精练 考点23圆的有关性质,文件包含2022-2023数学浙教版新中考精讲精练考点23圆的有关性质解析版docx、2022-2023数学浙教版新中考精讲精练考点23圆的有关性质原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。