|试卷下载
终身会员
搜索
    上传资料 赚现金
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质(原卷版).docx
    • 解析
      备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质(解析版).docx
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质01
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质02
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质03
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质01
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质02
    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质

    展开
    这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题08一次函数的图象与性质解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题08一次函数的图象与性质原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    

    目标点拨
    1.了解一次函数和正比例函数的概念,会根据已知条件或运用待定系数法求一次函数的表达式;
    2.会一次函数的图象并能根据图象解决相关的问题;
    3.掌握一次函数的性质并能灵活运用其性质解决相关的问题.
    知识总结
    一、正比例函数和一次函数的概念
    一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
    特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
    二、一次函数的图象
    所有一次函数的图象都是一条直线
    三、一次函数、正比例函数图象的主要特征
    一次函数的图象是经过点(0,b)的直线;正比例函数的图象是经过原点(0,0)的直线。
    k的符号
    b的符号
    函数图象
    图象特征
    k>0
    b>0
    y



    0 x




    图象经过一、二、三象限,y随x的增大而增大。
    b<0
    y



    0 x




    图象经过一、三、四象限,y随x的增大而增大。
    K<0
    b>0
    y




    0 x



    图象经过一、二、四象限,y随x的增大而减小
    b<0

    y



    0 x



    图象经过二、三、四象限,y随x的增大而减小。
    注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
    四、正比例函数的性质
    一般地,正比例函数有下列性质:
    (1)当k>0时,图象经过第一、三象限,y随x的增大而增大;
    (2)当k<0时,图象经过第二、四象限,y随x的增大而减小。
    五、一次函数的性质
    一般地,一次函数有下列性质:
    (1)当k>0时,y随x的增大而增大
    (2)当k<0时,y随x的增大而减小
    经典例题
    1.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是(  )
    A. B.
    C. D.
    【分析】求得解析式即可判断.
    【解析】∵函数y=ax+a(a≠0)的图象过点P(1,2),
    ∴2=a+a,解得a=1,
    ∴y=x+1,
    ∴直线交y轴的正半轴,且过点(1,2),
    故选:A.
    2.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线yx+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )
    A.y=x+2 B.yx+2 C.y=4x+2 D.yx+2
    【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.
    【解析】∵直线y=2x+2和直线yx+2分别交x轴于点A和点B.
    ∴A(﹣1,0),B(﹣3,0)
    A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;
    B、yx+2与x轴的交点为(,0);故直线yx+2与x轴的交点在线段AB上;
    C、y=4x+2与x轴的交点为(,0);故直线y=4x+2与x轴的交点不在线段AB上;
    D、yx+2与x轴的交点为(,0);故直线yx+2与x轴的交点在线段AB上;
    故选:C.
    3.(2020•嘉兴)一次函数y=2x﹣1的图象大致是(  )
    A. B.
    C. D.
    【分析】根据一次函数的性质,判断出k和b的符号即可解答.
    【解析】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.
    故选:B.
    4.(2020•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 y=﹣x+1(答案不唯一) .
    【分析】根据题意写出一个一次函数即可.
    【解析】设该函数的解析式为y=kx+b,
    ∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,

    解得:,
    所以函数的解析式为y=﹣x+1,
    故答案为:y=﹣x+1(答案不唯一).
    5.(2020•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 (32,4800) .

    【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.
    【解析】令150t=240(t﹣12),
    解得,t=32,
    则150t=150×32=4800,
    ∴点P的坐标为(32,4800),
    故答案为:(32,4800).
    6.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).
    (1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.
    (2)若货轮比游轮早36分钟到达衢州.问:
    ①货轮出发后几小时追上游轮?
    ②游轮与货轮何时相距12km?

    【分析】(1)根据图中信息解答即可.
    (2)①求出B,C,D,E的坐标,利用待定系数法求解即可.
    (3)分两种情形分别构建方程求解即可.
    【解析】(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.
    ∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).

    (2)①280÷20=14h,
    ∴点A(14,280),点B(16,280),
    ∵36÷60=0.6(h),23﹣0.6=22.4,
    ∴点E(22.4,420),
    设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,
    ∴s=20t﹣40(16≤t≤23),
    同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),
    由题意:20t﹣40=50t﹣700,
    解得t=22,
    ∵22﹣14=8(h),
    ∴货轮出发后8小时追上游轮.

    ②相遇之前相距12km时,20t﹣4﹣(50t﹣700)=12,解得t=21.6.
    相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,
    ∴21.6h或22.4h时游轮与货轮何时相距12km.
    7.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.
    x(厘米)
    1
    2
    4
    7
    11
    12
    y(斤)
    0.75
    1.00
    1.50
    2.75
    3.25
    3.50
    (1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?
    (2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?

    【分析】(1)利用描点法画出图形即可判断.
    (2)设函数关系式为y=kx+b,利用待定系数法解决问题即可.
    【解析】(1)观察图象可知:x=7,y=2.75这组数据错误.


    (2)设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得,
    解得,
    ∴yx,
    当x=16时,y=4.5,
    答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.
    8.(2020•衢州)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线yx+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
    ①线段EF长度是否有最小值.
    ②△BEF能否成为直角三角形.
    小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
    (1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
    (2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
    (3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.

    【分析】(1)根据描点法画图即可;
    (2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;
    (3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.
    【解析】(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.

    (2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,

    则∠FGK=∠DHK=90°,
    记FD交y轴于点K,
    ∵D点与F点关于y轴上的K点成中心对称,
    ∴KF=KD,
    ∵∠FKG=∠DKH,
    ∴Rt△FGK≌Rt△DHK(AAS),
    ∴FG=DH,
    ∵直线AC的解析式为yx+4,
    ∴x=0时,y=4,
    ∴A(0,4),
    又∵B(﹣2,0),
    设直线AB的解析式为y=kx+b,
    ∴,
    解得,
    ∴直线AB的解析式为y=2x+4,
    过点F作FR⊥x轴于点R,
    ∵D点的橫坐标为m,
    ∴F(﹣m,﹣2m+4),
    ∴ER=2m,FR=﹣2m+4,
    ∵EF2=FR2+ER2,
    ∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
    令4=0,得x,
    ∴0≤m.
    ∴当m=1时,l的最小值为8,
    ∴EF的最小值为2.
    (3)①∠FBE为定角,不可能为直角.
    ②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.
    ③如图3,∠BFE=90°时,有BF2+EF2=BE2.

    由(2)得EF2=8m2﹣16m+16,
    又∵BR=﹣m+2,FR=﹣2m+4,
    ∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
    又∵BE2=(m+2)2,
    ∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,
    化简得,3m2﹣10m+8=0,
    解得m1,m2=2(不合题意,舍去),
    ∴m.
    综合以上可得,当△BEF为直角三角形时,m=0或m.
    9.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.
    请根据图象解决下列问题:
    (1)求高度为5百米时的气温;
    (2)求T关于h的函数表达式;
    (3)测得山顶的气温为6℃,求该山峰的高度.

    【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;
    (2)应用待定系数法解答即可;
    (3)根据(2)的结论解答即可.
    【解析】(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),
    ∴13.2﹣1.2=12,
    ∴高度为5百米时的气温大约是12°C;

    (2)设T关于h的函数表达式为T=kh+b,
    则:,
    解得,
    ∴T关于h的函数表达式为T=﹣0.6h+15;

    (3)当T=6时,6=﹣0.6h+15,
    解得h=15.
    ∴该山峰的高度大约为15百米.
    10.(2020•绍兴)如图是某型号新能纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.
    (1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.
    (2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.

    【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;
    (2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.
    【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.
    1千瓦时的电量汽车能行驶的路程为:千米;

    (2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,
    得,
    ∴,
    ∴y=﹣0.5x+110,
    当x=180时,y=﹣0.5×180+110=20,
    答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.
    11.(2020•温州)如图,在平面直角坐标系中,直线yx+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.

    (1)求点B的坐标和OE的长.
    (2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标.
    (3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
    ①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
    ②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
    【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;
    (2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由tan∠EOF和nm+4,可得结论;
    (3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;
    ②分三种情况:
    (i)当PQ∥OE时,如图2,根据cos∠QBH,表示BH的长,根据AB=12,列方程可得t的值;
    (ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN,列方程为2t﹣2,可得t的值.
    (iii)由图形可知PQ不可能与EF平行.
    【解析】(1)令y=0,则x+4=0,
    ∴x=8,
    ∴B(8,0),
    ∵C(0,4),
    ∴OC=4,OB=8,
    在Rt△BOC中,BC4,
    又∵E为BC中点,
    ∴OEBC=2;
    (2)如图1,作EM⊥OC于M,则EM∥CD,

    ∵E是BC的中点
    ∴M是OC的中点
    ∴EMOB=4,OEBC=2
    ∵∠CDN=∠NEM,∠CND=∠MNE
    ∴△CDN∽△MEN,
    ∴1,
    ∴CN=MN=1,
    ∴EN,
    ∵S△ONEEN•OFON•EM,
    ∴OF,
    由勾股定理得:EF,
    ∴tan∠EOF,
    ∴,
    ∵nm+4,
    ∴m=6,n=1,
    ∴Q2(6,1);
    (3)①∵动点P、Q同时作匀速直线运动,
    ∴s关于t成一次函数关系,设s=kt+b,
    ∵当点P运动到AO中点时,点Q恰好与点C重合,
    ∴t=2时,CD=4,DQ3=2,
    ∴s=Q3C2,
    ∵Q3(﹣4,6),Q2(6,1),
    ∴t=4时,s5,
    将和代入得,解得:,
    ∴s,
    ∵s≥0,t≥0,且0,
    ∴s随t的增大而增大,
    当s≥0时,0,即t,当t时,Q3与Q重合,
    ∵点Q在线段Q2Q3上,
    综上,s关于t的函数表达式为:s(t≤4);
    ②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,
    作QH⊥x轴于点H,则PH=BHPB,

    Rt△ABQ3中,AQ3=6,AB=4+8=12,
    ∴BQ36,
    ∵BQ=6s=6t7t,
    ∵cos∠QBH,
    ∴BH=14﹣3t,
    ∴PB=28﹣6t,
    ∴t+28﹣6t=12,t;
    (ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,

    由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,
    ∵Q3Q=st,
    ∴Q3Gt﹣1,GQ=3t﹣2,
    ∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7t,
    ∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,
    ∵∠HPQ=∠CDN,
    ∴tan∠HPQ=tan∠CDN,
    ∴2t﹣2,t,
    (iii)由图形可知PQ不可能与EF平行,
    综上,当PQ与△OEF的一边平行时,AP的长为或.
    12.(2020•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系hx+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.
    (1)求y关于x的函数解析式;
    (2)请通过计算说明甲、乙两人谁先到达一楼地面.

    【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;
    (2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.
    【解析】(1)设y关于x的函数解析式是y=kx+b,
    ,解得,,
    即y关于x的函数解析式是yx+6;
    (2)当h=0时,0x+6,得x=20,
    当y=0时,0x+6,得x=30,
    ∵20<30,
    ∴甲先到达地面.
    13.(2020•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.
    (1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.
    (2)求第一班车从入口处到达塔林所需的时间.
    (3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

    【分析】(1)设y=kx+b,运用待定系数法求解即可;
    (2)把y=1500代入(1)的结论即可;
    (3)设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
    【解析】(1)由题意得,可设函数表达式为:y=kx+b(k≠0),
    把(20,0),(38,2700)代入y=kx+b,得,解得,
    ∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);

    (2)把y=1500代入y=150x﹣3000,解得x=30,
    30﹣20=10(分),
    ∴第一班车从入口处到达塔林所需时间10分钟;

    (3)设小聪坐上了第n班车,则
    30﹣25+10(n﹣1)≥40,解得n≥4.5,
    ∴小聪坐上了第5班车,
    等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),
    步行所需时间:1200÷(1500÷25)=20(分),
    20﹣(8+5)=7(分),
    ∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.
    14.(2020•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).
    根据图1和图2中所给信息,解答下列问题:
    (1)求甲步行的速度和乙出发时甲离开小区的路程;
    (2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;
    (3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)

    【分析】(1)根据函数图象中的数据可以求得甲步行的速度和乙出发时甲离开小区的路程;
    (2)根据函数图象中的数据可以求得OA的函数解析式,然后将x=18代入OA的函数解析式,即可求得点E的纵坐标,进而可以求得乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;
    (3)根据题意可以求得乙到达学校的时间,从而可以函数图象补充完整.
    【解析】(1)由图可得,
    甲步行的速度为:2400÷30=80(米/分),
    乙出发时甲离开小区的路程是10×80=800(米),
    答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;
    (2)设直线OA的解析式为y=kx,
    30k=2400,得k=80,
    ∴直线OA的解析式为y=80x,
    当x=18时,y=80×18=1440,
    则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),
    ∵乙骑自行车的时间为:25﹣10=15(分钟),
    ∴乙骑自行车的路程为:180×15=2700(米),
    当x=25时,甲走过的路程为:80×25=2000(米),
    ∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),
    答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;
    (3)乙步行的速度为:80﹣5=75(米/分),
    乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),
    当25≤x≤30时s关于x的函数的大致图象如右图所示.

    15.(2020•衢州)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x,y那么称点T是点A,B的融合点.
    例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x1,y2时,则点T(1,2)是点A,B的融合点.
    (1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.
    (2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.
    ①试确定y与x的关系式.
    ②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.

    【分析】(1)x(﹣1+7)=2,y(5+7)=4,即可求解;
    (2)①由题意得:x(t+3),y(2t+3),即可求解;
    ②分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.
    【解析】(1)x(﹣1+7)=2,y(5+7)=4,
    故点C是点A、B的融合点;

    (2)①由题意得:x(t+3),y(2t+3),
    则t=3x﹣3,
    则y(6x﹣6+3)=2x﹣1;
    ②当∠DHT=90°时,如图1所示,

    点E(t,2t+3),则T(t,2t﹣1),则点D(3,0),
    由点T是点D,E的融合点得:
    t,2t﹣1,
    解得:t,即点E(,6);
    当∠TDH=90°时,如图2所示,

    则点T(3,5),
    由点T是点D,E的融合点得:点E(6,15);
    当∠HTD=90°时,如图3所示,

    过点T作x轴的平行线交过点D与y轴平行的直线于点M,交过点E与y轴的平行线于点N,
    则∠MDT=∠NTE,则tan∠MDT=tan∠NTE,
    D(3,0),点E(t,2t+3),则点T(,)
    则MT=3,MD,
    NE2t﹣3,NTt,
    由tan∠MDT=tan∠NTE得:,
    解得:方程无解,故∠HTD不可能为90°.
    故点E(,6)或(6,15).
    16.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
    (1)4月份进了这批T恤衫多少件?
    (2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
    ①用含a的代数式表示b.
    ②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
    【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;
    (2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;
    ②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.
    【解析】(1)设3月份购进x件T恤衫,

    解得,x=150,
    经检验,x=150是原分式方程的解,
    则2x=300,
    答:4月份进了这批T恤衫300件;
    (2)①每件T恤衫的进价为:39000÷300=130(元),
    (180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)
    化简,得
    b;
    ②设乙店的利润为w元,
    w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36600=36a+2100,
    ∵乙店按标价售出的数量不超过九折售出的数量,
    ∴a≤b,
    即a,
    解得,a≤50,
    ∴当a=50时,w取得最大值,此时w=3900,
    答:乙店利润的最大值是3900元.
    17.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
    (1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.
    (2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?

    【分析】(1)由待定系数法可求出函数解析式;
    (2)根据图中的信息求出乙返回B地所需的时间,由题意可列出不等式1.6v≥120,解不等式即可得出答案.
    【解析】(1)设函数表达式为y=kx+b(k≠0),
    把(1.6,0),(2.6,80)代入y=kx+b,得,
    解得:,
    ∴y关于x的函数表达式为y=80x﹣128(1.6≤x≤3.1);
    (2)当y=200﹣80=120时,
    120=80x﹣128,
    解得x=3.1,
    货车甲正常到达B地的时间为200÷50=4(小时),
    18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),
    设货车乙返回B地的车速为v千米/小时,
    ∴1.6v≥120,
    解得v≥75.
    答:货车乙返回B地的车速至少为75千米/小时.


    相关试卷

    备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    备战2023数学新中考二轮复习重难突破(浙江专用)专题16 视图与投影: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题16 视图与投影,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备战2023数学新中考二轮复习重难突破(浙江专用)专题08 一次函数的图象与性质
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map