搜索
    上传资料 赚现金
    英语朗读宝

    班海数学人教版七下-5.2 平行线及其判定 【优质教案】

    班海数学人教版七下-5.2 平行线及其判定 【优质教案】第1页
    班海数学人教版七下-5.2 平行线及其判定 【优质教案】第2页
    班海数学人教版七下-5.2 平行线及其判定 【优质教案】第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版七年级下册5.2.1 平行线教学设计

    展开

    这是一份初中数学人教版七年级下册5.2.1 平行线教学设计,共11页。教案主要包含了教学目标,教学重难点,教学过程,板书设计等内容,欢迎下载使用。
    5.2 平行线及其判定 教案平行线【教学目标】知识与技能:感受平行线的概念,理解平行公理,能作出已知直线的平行线.过程与方法:通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.情感态度与价值观:丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.【教学重难点】重点:平行线的概念和平行公理.难点:用几何语言描述作图过程. 【教学过程】一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出不相交的两直线而遗漏在同一平面内,教师此处应适当放开,让学生结合现实生活中的情景讨论在同一平面内的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”. 2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是(  )A.2组   B.3组   C.4组   D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段ae,线段bd,线段cf.2.已知:D是AOB内部一点,如图,过D作DEAO,作DFBO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且ABCD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【板书设计】一、创设情境,导入新课二、新知探索三、巩固练习四、课堂小结五、课后作业平行线的判定——利用同位角、第三直线教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.重点:探索两直线平行的条件难点:理解同位角相等,两条直线平行教学过程一、情景导入.装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定。二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。简化图5.2-5,得图3.1与2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然1与2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:1=2ABCD.如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据同位角相等,两条直线平行.,可知这样画出的就是平行线。如图,(1)如果2=3,能得出ab吗?(2)如果2+4=1800,能得出ab吗?你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言2=3ab.(2)4+2=180°,4+1=180°(已知)2=1(同角的补角相等)ab.同位角相等,两条直线平行你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言4+2=180°ab.四、课堂练习1、课本P15练习1,补充(3)由A+ABC=1800可以判断哪两条直线平行?依据是什么?2、课本P16五、课堂小结:怎样判断两条直线平行?六、布置作业::P16、1、2题;P174、5、6。平行线的判定--利用内错角、同旁内角【教学目标】知识与技能:使学生认识平行线的识别法,能灵活地利用平行线的两个识别法解决一些简单的问题.过程与方法:经历平行线两种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.情感态度与价值观:通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.【教学重难点】重点:平行线的两种识别方法.难点:运用两种识别方法进行简单的推理.【教学过程】一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了αβ的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习平行线的识别.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果1=3,那么ab.(交流后得出)因为1=3(已知),2=3(对顶角相等),所以1=2,ab.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示如图,直线a、b被直线l所截,已知1=115°,2=115°,那么ab吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,1=115°,3=65°,那么ab吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.如图,在四边形ABCD中,已知B=60°,C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,1=2,3=4,试问EF是否与GH平行?【答案】因为1=2(已知),又因为CGE=2(对顶角相等),所以1=CGE(等量代换),又因为3=4(已知),所以3+1=4+CGE,MEF=EGH,所以EFGH(同位角相等,两直线平行).2.如图,已知1=35°,B=55°,ABAC,则(1)DAB+B=   ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢? 【答案】(1)180° (2)ADBC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使ABCD,则须满足ACDC,或B+BCD=180°.【板书设计】一、提出问题,创设情境二、动手实验,发现新知三、运用新知四、课堂小结五、课后作业   感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!     

    相关教案

    数学2 探索轴对称的性质教案:

    这是一份数学2 探索轴对称的性质教案,共6页。

    北师大版七年级下册4 用尺规作角教案:

    这是一份北师大版七年级下册4 用尺规作角教案,共5页。教案主要包含了问题的提出,.新课等内容,欢迎下载使用。

    数学10.2 直方图教学设计:

    这是一份数学10.2 直方图教学设计,共5页。教案主要包含了导入新课,频数分布直方图,频数分布折线图,课堂小结等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map