数学10.2 直方图教学设计
展开直方图
教学目标:
1、理解频数、频数分布的意义,学会制作频数分布表;
2、学会画频数分布直方图和频数折线图.
教学重点:
学会画频数分布直方图
教学难点:
确定组距和组数
教学过程:
一、导入新课
收集数据、整理数据、描述数据是统计的一般过程.我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图.
二、频数分布直方图
问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位:㎝)如下:
158、158、160、168、159、159、151、158、159、168、158、154、158、154、169、158、158、158、159、167、170、153、160、160、159、159、160、149、163、163、162、172、161、153、156、162、162、163、157、162、162、161、157、157、164、155、156、165、166、156、154、166、164、165、156、157、153、165、159、157、155、164、156
选择身高在哪个范围的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多.
为此我们把这些数据适当分组来进行整理.
1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23.
说明身高的变化范围是23㎝.
2、决定组距与组数
把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组).
将数据分成8组:149≤x<152,152≤x<155,…,170≤x<173.
注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多.
3、频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).用表格整理可得频数分布表:
频数分布表
身高分组 | 划记 | 频数 |
149≤x<152 |
| 2 |
152≤x<155 | 正一 | 6 |
155≤x<158 | 正正 | 12 |
158≤x<161 | 正正正 | 19 |
161≤x<164 | 正正 | 10 |
164≤x<167 | 正 | 8 |
167≤x<170 |
| 4 |
170≤x<173 |
| 2 |
从表格中你能看出应从哪个范围内选队员吗?
可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员.
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图.
上面小长方形的面积表示什么意义?
小长方形的面积=组距×=频数.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少.
等距分组时,各小长方形的面积(频数)与高的比是常数(组距).因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数.
这样,上面的频数分布图可画成下面的形式:
三、频数分布折线图
在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况.
首先取直方图的每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距.
例如,在上面的直方图的左边取点(147.5,0),在直方图右边取点(174.5,0),将所取的这些点用线段依次连接起来,就得到频数分布折线图.
四、课堂小结
频数分布直方图是描述数据的又一方式,画频数分布直方图的关键是确定组距和组数,而这一点没有固定的标准,要凭借经验和所研究的具体问题来决定.频数分布折线图也是描述频数分布情况的一种方式.
作业:
课本习题第1题
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
北师大版七年级下册4 用尺规作角教案: 这是一份北师大版七年级下册4 用尺规作角教案,共5页。教案主要包含了问题的提出,.新课等内容,欢迎下载使用。
初中数学北师大版七年级下册7 整式的除法教学设计: 这是一份初中数学北师大版七年级下册7 整式的除法教学设计,共10页。教案主要包含了复习回顾,情境引入,探究新知,例题讲解,课堂练习,处理情境问题,知识小结,布置作业等内容,欢迎下载使用。
数学七年级下册7.1.2平面直角坐标系教案及反思: 这是一份数学七年级下册7.1.2平面直角坐标系教案及反思,共7页。