终身会员
搜索
    上传资料 赚现金
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】
    立即下载
    加入资料篮
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】01
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】02
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】03
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】04
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】05
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】06
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】07
    班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】08
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级下册第二十八章 锐角三角函数28.1 锐角三角函数课堂教学ppt课件

    展开
    这是一份九年级下册第二十八章 锐角三角函数28.1 锐角三角函数课堂教学ppt课件,共46页。PPT课件主要包含了课前导入,新课精讲,学以致用,课堂小结,情景导入,探索新知,典题精讲,易错提醒,小试牛刀,同学们下节课见等内容,欢迎下载使用。

    根据已知条件,你能用塔身中心线与垂直中心线所成的角度来描述比萨斜塔的倾斜程度吗?
    为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡的坡角 (∠A)为30°,为使出水口的高度为35 m,需要准备多长的水管?
    这个问题可以归结为:在Rt△ABC 中,∠C=90°,∠A=30°,BC = 35 m, 求 AB (如图). 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即可得AB = 2BC = 70(m).也就是说,需要准备70 m长的水管.
    思考: 在上面的问题中,如果出水口的高度为50 m,那么需要准备多长的水管?
    在上面求AB (所需水管的长度)的过程中,我们用到了结论:在直角三角形中,如果一个锐角等于30°,那么无论这个直角三角形大小如何,这个角的对边与斜边的比都等于
    思考:如图,任意画一个Rt△ABC,使∠C=90°,∠A =45°,计算∠A的对边与斜边的比 由此你能得出什么结论?
    如图,在Rt△ABC 中,∠C=90°,因为∠A= 45°,所以Rt△ABC 是等腰直角三角形.由勾股定理得 AB 2 =AC 2+BC 2 = 2BC 2 , AB = BC. 因此即在直角三角形中,当一个锐角等于45°时,无论这个直角三角形大小如何, 这个角的对边与斜边的比都等于
    综上可知,在Rt△ABC 中, ∠C = 90°,当∠A = 30°时, ∠A的对边与斜 边的比都等于 是一个固定值;当∠A = 45°时, ∠A的对边与斜边的比都等于 也是一个固定值.一般地,当∠A是任意一个确定的锐角时,它的对边与斜边的比是否也是一个固定值呢?
    探究:任意画Rt△ABC 和Rt△ (如图),使得 那么 与 有什么关系?你能解释一下吗?
    在图中,由于 所以 Rt△ABC∽Rt△ 因此 即 这就是说,在Rt△ABC 中,当锐角A 的度数一定时, 无论这个直角三角形大小如何,∠A的对边与斜边的 比都是一个固定值.
    如图,在Rt△ABC中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sine),记作sin A,即例如,当∠A=30°时,我们有 sin A=sin 30°=当∠A=45°时,我们有 sin A=sin 45°=
    ∠A的正弦sin A随着∠A的变化而变化.
    例1 如图 ,在 Rt△ABC 中,∠C = 90°,求 sin A 和 sin B 的值.
    解:如图(1),在Rt△ABC 中,由勾股定理得 因此 如图(2),在Rt△ABC 中,由勾股定理得 因此
    求sin A 就是要确定∠A 的对边与斜边 的比;求sin B 就是要确定∠B 的对边与斜边的比.
    如图,在Rt△ABC 中,∠C=90°, 求sin A和sin B 的值.
    解:由勾股定理得 所以
    解:由勾股定理得 ∴
    在Rt△ABC 中,∠C=90°,AB=13,AC=5,则sin A 的值为(  ) B. C. D.
    把Rt△ABC 三边的长度都扩大为原来的3倍,则锐角∠A 的正弦值(  ) A.不变 B.缩小为原来的 C.扩大为原来的3倍 D.不能确定
    在Rt△ABC中,∠C=90°,AC=12,BC=5,则sin A 的值为(  ) A. B. C. D.
    例2 在Rt△ABC 中,∠C=90°,BC=2,sin A= 则边 AC 的长是( ) A. B.3 C. D.
    解析:如图, 而BC=2,
    由正弦值求边长,当已知角的对边或斜边长时,通常先根据某个锐角的正弦的定义确定斜边或对边,再根据勾股定理求另一边;当已知角的邻边时,根据正弦函数的定义确定另外两边的比值,根据勾股定理列方程求解即可.
    在Rt△ABC 中,∠C=90°, ∠A=90°,求sin A 的值.
    解:如图. ∠B=90°-∠A=90°-60°=30°. ∴sin B=sin30°= 设AC=a,则AB=2a, ∴
    2 在Rt△ABC 中,∠C=90°,AC=9,sin B= , 则AB 的长等于(  ) A.15 B.12 C.9 D.6在Rt△ABC 中,∠C=90°,若AB=4,sin A= , 则斜边上的高等于(  ) A. B. C. D.
    已知sin 6°=a,sin 36°=b,则sin2 6°=(  )A.a 2 B.2a C.b 2 D.b
    在直角三角形ABC 中,AC=4,BC=3,求sin A 的值.
    易错点:审题不清,找错直角边或斜边.
    如图,在矩形ABCD 中,AB=8,BC =12,点E 是BC 的中点,连接AE,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC,则sin∠ECF=(  ) A. B. C. D.
    如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sin α 的值是(  ) A. B. C. D.
    如图,⊙O 的直径AB=4,BC 切⊙O 于点B,OC 平行于弦AD,OC=5,则AD 的长为(  ) A. B. C. D.
    4 已知:如图,在△ABC 中,∠C=90°,点D,E 分别 在边AB,AC上,DE∥BC,DE=3,BC=9. (1)求 的值; (2)若BD=10,求sin A 的值.
    (1)∵DE∥BC,∴△ADE∽△ABC,∴ 又∵DE=3,BC=9,∴(2)根据(1)中 ,得 ∵BD=10,DE=3,BC=9, ∴ ,解得AD=5,∴AB=15. ∴sin A=
    已知:如图,⊙O 的直径AB 为3,线段AC=4,直线 AC 和PM 分别与⊙O 相切于点A,M. (1)求证:点P 是线段AC 的中点; (2)求sin∠PMC 的值.
    (1)证明:如图,连接AM.∵AB是⊙O 的直径, ∴∠AMB=90°.∴∠AMC=90°. ∴∠MAC+∠C=90°,∠PMC+ ∠PMA=90°.∵AC 和PM 分别与⊙O 相切于点A, M,∴PM=PA. ∴∠PMA=∠PAM. ∴∠C= ∠PMC. ∴PC=PM. ∴PA=PC,即点P 是线段AC 的中点.(2)解:∵AC 切⊙O 于点A,∴∠BAC=90°.又∵AB=3, AC=4,∴BC=5.由(1)知∠C=∠PMC, ∴sin ∠PMC=sin C= .
    如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB 上的中 线,过点A作AE⊥CD,AE 分别与CD,CB 相交于点H,E, AH=2CH. (1)求sin B 的值; (2)如果CD= ,求BE 的值.
    如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于 第二、四象限内的A,B 两点,与x 轴交于点C,与y 轴交于点D,点B 的坐标是(m,-4),连接AO,AO=5,sin ∠AOC= . (1)求反比例函数的解析式; (2)连接OB,求△AOB 的面积.
    一键发布配套作业 & AI智能精细批改(任务-发布任务-选择章节)
    相关课件

    数学九年级下册29.2 三视图图文课件ppt: 这是一份数学九年级下册29.2 三视图图文课件ppt,共44页。PPT课件主要包含了课前导入,新课精讲,学以致用,课堂小结,情景导入,探索新知,典题精讲,易错提醒,小试牛刀,同学们下节课见等内容,欢迎下载使用。

    初中人教版第二十八章 锐角三角函数28.1 锐角三角函数课文配套ppt课件: 这是一份初中人教版第二十八章 锐角三角函数28.1 锐角三角函数课文配套ppt课件,共45页。PPT课件主要包含了课前导入,新课精讲,学以致用,课堂小结,情景导入,探索新知,典题精讲,易错提醒,小试牛刀,同学们下节课见等内容,欢迎下载使用。

    初中数学人教版九年级下册28.1 锐角三角函数课文内容课件ppt: 这是一份初中数学人教版九年级下册28.1 锐角三角函数课文内容课件ppt,共39页。PPT课件主要包含了课前导入,新课精讲,学以致用,课堂小结,情景导入,探索新知,典题精讲,易错提醒,小试牛刀,同学们下节课见等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        班海数学人教版九下-28.1 锐角三角函数 第一课时【优质课件】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map