所属成套资源:高二数学同步课件 同步练习(2019人教A版选择性 必修第二册)
- 4.4 数学归纳法课件PPT 课件 0 次下载
- 第四章 数列 习题课——数列求和课件PPT 课件 1 次下载
- 4.1 第1课时 数列的概念与简单表示 试卷 试卷 0 次下载
- 4.2.1 第1课时 等差数列的概念及通项公式 试卷 试卷 0 次下载
- 4.2.2 第1课时 等差数列的前n项和 试卷 试卷 0 次下载
第四章 数列 章末整合课件PPT
展开
这是一份第四章 数列 章末整合课件PPT,共40页。
高中同步学案优化设计GAO ZHONG TONG BU XUE AN YOU HAU SHE JI第四章2021内容索引知识网络 整合构建专题归纳 思维深化知识网络 整合构建专题归纳 思维深化例1在等比数列{an}中,已知a1=2,a4=16.(1)求数列{an}的通项公式;(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.分析根据条件列方程求{an}的公比及{bn}的首项与公差.解 (1)设{an}的公比为q,由已知得16=2q3,解得q=2,所以an=2×2n-1=2n.(2)由(1)得a3=8,a5=32,则b3=8,b5=32.设{bn}的公差为d,规律方法 等差数列与等比数列的基本运算的求解策略在等差数列和等比数列的通项公式an与前n项和公式Sn中,共涉及五个量,a1,an,n,d(或q),Sn,其中a1和d(或q)为基本量.“知三求二”是指将已知条件转换成关于a1,d(q),an,Sn,n的方程组,利用方程的思想求出需要的量.当然在求解中若能运用等差(比)数列的性质会更好,这样可以化繁为简,减少运算量,同时还要注意整体代入思想方法的运用.变式训练 1已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.角度1 利用Sn与an的关系求通项公式例2(1)已知数列{an}的前n项和Sn=3+2n,求an.(2)数列{an}的前n项和为Sn且a1=1,an+1= Sn,求an.角度2 应用累加(迭乘、迭代)法求通项例3在数列{an}中,a1=1,an=an-1+2n-1(n≥2),求数列{an}的通项公式.解 ∵a1=1,an=an-1+2n-1(n≥2),∴an-an-1=2n-1,∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1角度3 构造法求通项公式例4在数列{an}中,a1=1,an+1=2an+3n,求数列{an}的通项公式.角度4 取倒数法求通项公式 答案 B 规律方法 取倒数法适用于“ (n≥2,n∈N*,k,m,p均为常数,m≠0)”型数列求通项公式.两边取倒数后得到一个新的特殊(等差或等比)数列或类似于an=kan-1+b的关系式.角度5 待定系数法求通项公式 答案 C 规律方法 形如“an+2=pan+1+qan”的递推关系,求解时可利用an+2+αan+1=β(an+1+αan),结合已知条件求出α,β,此时数列{an+1-αan}为等比数列.角度6 取对数法 例8已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数且k≠0,c≠1),且a2=4,a6=8a3,(1)求an;(2)求数列{nan}的前n项和Tn.分析利用an=Sn-Sn-1(n≥2)求数列的通项公式后求k与c,判断出{an}是等比数列,利用错位相减法求和.解 (1)当n>1时,an=Sn-Sn-1=k(cn-cn-1),则a6=k(c6-c5),a3=k(c3-c2),∵a2=4,即k(c2-c1)=4,解得k=2,∴an=2n.当n=1时,a1=S1=2.综上所述,an=2n(n∈N*).(2)nan=n·2n,则Tn=2+2·22+3·23+…+n·2n,2Tn=1·22+2·23+3·24+…+(n-1)·2n+n·2n+1,两式作差得-Tn=2+22+23+…+2n-n·2n+1,Tn=2+(n-1)·2n+1.规律方法 数列求和的常用方法(1)公式法:利用等差数列或等比数列前n项和公式.(2)分组求和法:把一个数列分成几个可以直接求和的数列.(3)裂项相消法:把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(4)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(5)倒序相加法:适用于等差数列前n项和公式的推导.(6)并项转化法:如果一个数列的项是正负交错的,尤其是当各项的绝对值又构成等差数列时,可以依次两项两项(或几项几项)合并,再利用其他相关的方法进行求和.延伸探究 本例中的条件不变,(2)中“求数列{nan}的前n项和Tn”变为“求数列{n+an}的前n项和Tn”.解 由题知Tn=1+2+2+22+3+23+…+n+2n=(1+2+3+…+n)+(2+22+…+2n)例9数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*).(1)设bn=an+1-2an,求证:{bn}是等比数列;分析利用an=Sn-Sn-1结合已知条件构造关于an+2,an+1,an的递推关系式,寻找an+2-2an+1与an+1-2an的关系.规律方法 等差数列、等比数列的判断方法(1)定义法:an+1-an=d(n≥1,n∈N*,d为常数)⇔{an}是等差数列; =q(n≥1,n∈N*,q为常数,q≠0)⇔{an}是等比数列.(2)中项公式法:2an+1=an+an+2(n≥1,n∈N*)⇔{an}是等差数列; =an·an+2(n≥1,n∈N*,an≠0)⇔{an}是等比数列.(3)通项公式法:an=kn+b(n≥1,n∈N*,k,b是常数)⇔{an}是等差数列;an=c·qn(n≥1,n∈N*,c,q为非零常数)⇔{an}是等比数列.(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n≥1,n∈N*)⇔{an}是等差数列;Sn=Aqn-A(A,q为常数,且A≠0,q≠0,q≠1,n≥1,n∈N*)⇔{an}是公比不等于1的等比数列.变式训练 2已知数列{an}满足a1=1,nan+1=2(n+1)an.设bn= .(1)求b1,b2,b3;(2)判断数列{bn}是不是等比数列,并说明理由;(3)求{an}的通项公式.(1)写出a2,a3,a4的值,并猜想数列{an}的通项公式;(2)用数学归纳法证明你的结论.分析根据已知条件求出a2,a3,a4,归纳其通项公式后利用数学归纳法证明.规律方法 (1)数学归纳法的两个关注点①用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.②由n=k到n=k+1时,除等式两边变化的项外还要利用n=k时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.(2)与“归纳—猜想—证明”相关的常见题型的处理策略①与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.②与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法.