所属成套资源:中考数学二轮专题复习《圆》解答题专项练习(含答案)
中考数学二轮专题复习《圆》解答题专项练习八(含答案)
展开
这是一份中考数学二轮专题复习《圆》解答题专项练习八(含答案),共13页。试卷主要包含了5m,等内容,欢迎下载使用。
中考数学二轮专题复习《圆》解答题专项练习八1.如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,sinA=,求线段EF的长. 2.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长. 3.如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长. 4.在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标. 5.已知 AB 是⊙O 的直径,弦 CD⊥AB 于 H,过 CD 延长线上一点 E 作⊙O 的切线交 AB的延长线于 F,切点为 G,连接 AG 交 CD 于 K.(1)如图 1,求证:KE=GE;(2)如图 2,连接 CABG,若∠ACH=2∠FGB,求证:CA∥FE;(3)如图 3,在(2)的条件下,连接 CG 交 AB 于点 N,若 sinE=,AK=,求 CN的长. 6.问题背景:如图①,点A,B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连结AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图②,已知⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为____;(2)知识拓展:如图③,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程. 7.如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F(1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长. 8.如图1所示,已知AB,CD是⊙O的直径,T是CD延长线的一点,⊙O的弦AF交CD于点E,且AE=EF,OA2=OE•OT.(1)如图1,求证:BT是⊙O的切线;(2)在图1中连接CB,DB,若BC=2BD,求tan∠T的值;(3)如图2,连接DF交AB于点G,过G作GP⊥CD于点P,若BT=6,DT=6.求:DG的长.
0.参考答案1.解:(1)如图,连接BD.OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴=,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB==,则S阴影=S△ODE﹣S扇形ODB=8﹣;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴=,即=,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴=,即=,∴EB=,∴EF==.2.解: 3.解:4.解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1; (2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1; (3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).5.解:(1)证明:连接 OG.∵EF 切⊙O 于 G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB 于 H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作 NP⊥AC 于 P.∵∠ACH=∠E,∴sin∠E=sin∠ACH= =,设 AH=3a,AC=5a, 则 CH=4a,tan∠CAH= =,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=a,tan∠AKH==3,AK=a,∵AK=,∴ a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形 BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC 于 P,∴∠APN=∠CPN=90°,在 Rt△APN 中,tan∠CAH==,设 PN=12b,则 AP=9b,在 Rt△CPN 中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=, ∴CN= =4 b= .6.解:(1)如图①,作点B关于CD的对称点E,连结AE交CD于点P,此时PA+PB最小,且等于AE.作直径AC′,连结C′E.根据垂径定理得.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2.即AP+BP的最小值是2;① ②解:(2)如答图②,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴∠B′AM=∠BAM,AB′=AB,AM=AM,∴△B′AM≌△BAM(SAS),∴BM=B′M,∠BMA=∠B′MA=90°,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′·sin45°=AB·sin45°=10×=5,∴BE+EF的最小值为5.7.解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=. 8.解:(1)证明:CD是⊙O的直径,⊙O的弦AF交CD于点E,且AE=EF,∴CD⊥AF,∠AEO=90°,∴AO2=OE•OT,AB是圆的直径,∴,又∠AOE=∠BOT,∴△AOE∽△TOB,∴∠OBT=∠AEO=90°,∴BT是⊙O的切线;(2)CD是圆的直径,∴∠CBD=90°,又∠OBT=90°,∴∠CBO=∠DBT,∵OB=OC,∴∠C=∠OBC,∴∠C=∠DBT,又∠T=∠T,∴△DBT∽△BCT,∴,设DT=m(m>0),则BT=2m,CT=4m,则CD=3m,OB=OD=1.5m,在Rt△OBT中,tanT=,(3)∵∠OBT=90°,∴OB2+BT2=OT2,设半径为r,又BT=6,DT=6,r2+(6)2+(r+6)2,解得:r=3,∴△AOE∽△TOB,∴,即:,∴OE=1,AE=2,∵GP⊥CD于点P,∠AEO=90°,∴∠AEO=∠GPO,又∠AOE=∠GOP,∴△AOE∽△GOP,∴,设:OP=a,则PG=2a,PD=OD﹣OP=3﹣a,而△PDG∽△EDF,则,即:,解得:a=,∴PD=,PG=,在Rt△PDG中,DG==.
相关试卷
这是一份中考数学二轮专题复习《圆》解答题专项练习一(含答案),共10页。
这是一份中考数学二轮专题复习《圆》解答题专项练习四(含答案),共11页。
这是一份中考数学二轮专题复习《圆》解答题专项练习十(含答案),共12页。