所属成套资源:中考数学二轮专题复习《圆》解答题专项练习(含答案)
中考数学二轮专题复习《圆》解答题专项练习六(含答案)
展开
这是一份中考数学二轮专题复习《圆》解答题专项练习六(含答案),共11页。
中考数学二轮专题复习《圆》解答题专项练习六1.如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径. 2.如图,己知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是弧BC的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE·EF的值最大? 最大值是多少? 3.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连结EF,当t为何值时,△BEF为直角三角形. 4.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由. 5.如图,正方形ABCD的边长为2,点E在边AD上(不与A、D重合),点F在边CD上,且∠EBF=45°.△ABE的外接圆O与BC、BF分别交于点G、H.(1)在图1中作出圆O,并标出点G和点H;(2)若EF∥AC,试说明与的大小关系,并说明理由;(3)如图2所示,若圆O与CD相切,试求△BEF的面积. 6.如图,直径为10的半圆O,tan∠DBC=0.75,∠BCD平分线交⊙O于F,E为CF延长线上一点,且∠EBF=∠GBF.(1)求证:BE为⊙O切线;(2)求证:BG2=FG∙CE;;(3)求OG的值. 7.如图,在矩形ABCD中,AB=1,BC=2,点E是AD边上一动点(不与点A,D重合 ),过A、E、C三点的⊙O交AB延长线于点F,连接CE、CF.(1)求证:△DEC∽△BFC;(2)设DE的长为x,△AEF的面积为y. ①求y关于x的函数关系式,并求出当x为何值时,y有最大值; ②连接AC,若△ACF为等腰三角形,求x的值. 8.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.
0.参考答案1.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)连接OF,AF,BF,∵DA=DO,CD⊥OA,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=0.5∠AOF=30°(3)过点C作CG⊥BE于点G,由CE=CB,∴EG=0.5BE=5又Rt△ADE∽Rt△CGE∴sin∠ECG=sin∠A=,∴CE==13∴CG==12,又CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得=∴AD=•CG=4.8∴⊙O的半径为2AD=9.6. 2.解:(1)如图1,连接OE.
∵弧DE=弧BE,
∴∠BOE=∠EOD,
∵OD∥BF,
∴∠DOE=∠BEO,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OBE=∠OEB=∠BOE=60°,
∵CF⊥AB,
∴∠FCB=90°,
∴∠F=30°;
(2)连接OE,过O作OM⊥BE于M,
∵OB=OE,
∴BE=2BM,
∵OD∥BF,
∴∠COD=∠B,
在△OBM与△ODC中∠OCD=∠OMB=90°,∠COD=∠B,OD=OM,
∴△OBM≌△ODC,
∴BM=OC,
∴BE=2OC;
(3)∵OD∥BF,
∴△COD∽△CBF,
∴OC:BC=OD:BF,
∵AC=x,AB=4,
∴OA=OB=OD=2,
∴OC=2-x,BE=2OC=4-2x,
∴,∴,∴EF=BF-BE=,
∴BE•EF=•2(2-x)=-4x2+12x=-4(x-1.5)2+9,
∴当x=1.5时,最大值=9.3.解:(1)证明:如图,连接CD,则CD⊥AB, 又∵AC=BC,∴AD=BD , 即点D是AB的中点.(2)解:DE是⊙O的切线.理由是:连接OD,则DO是△ABC的中位线,∴DO∥AC.又∵DE⊥AC,∴DE⊥DO,又∵OD是⊙O的半径,∴DE是⊙O的切线.(3)∵AC=BC,∴∠B=∠A,∴cos∠B=cos∠A=.∵cos∠B==,BC=18,∴BD=6,∴AD=6.∵cos∠A==,∴AE=2. 在Rt△AED中,DE=4 .4.解: 5.解:(1)如图1,(2)如图2,连接BD、EG、EH,∵EF∥AC,∴DE=DF,又∵BD平分∠EDF,∴BD为EF的中垂线,∴BE=BF,BD平分∠EBF,又∵∠EBF=45°=∠DBC,∴∠EBD=∠DBF=∠HBG=22.5°,∴∠EBG=67.5°,又∵∠EGB=90°,∴∠BEG=22.5°=∠HBG,∴=,(3)如图3,将△BCF绕点B逆时针旋转90°到△BAP,过点B作BQ⊥EF,设⊙O与CD相切于点M,连接OM,延长MO交AB于点N,在△BPE与△BFE中,,∴△BPE≌△BFE(SAS),∴∠AEB=∠BEQ,PE=EF,由∠AEB=∠BEQ可知,在△AEB和△QEB中,,∴△AEB≌△QEB(AAS),∴BQ=AB=2,由PE=EF可知,C△EFD=ED+DF+EF=ED+DF+PE=ED+DF+PA+AE=ED+AE+DF+FC=4,设AE=a,DF=b,则DE=2﹣a,BE=,∵O为BE中点,且MN∥AD,∴ON==,∴OM=2﹣,又BE=2OM,∴=4﹣a,解得a=,∴ED=,又∵C△EFD=4,DF=b,∴EF=4﹣b﹣=﹣b,在RT△EDF中,()2+b2=(﹣b)2,解得b=,∴EF=﹣=,∴S△BEF=××2=.6.解:7.解:(1)证明:如图1中,连接EF.∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=2,∠A=∠D=∠DCB=∠ABC=∠CBF=90°,∴EF是⊙O直径,∴∠ECF=90°,∴∠DCB=∠ECF,∴∠DCE=∠BCF,∵∠D=∠CBF,∴△DEC∽△BFC.(2)①∵△DEC∽△BFC,∴=,∴=,∴BF=2x,AF=1+2x,∴y=•AE•AF=(2﹣x)(1+2x)=﹣x2+x+1=﹣(x﹣)2+,∵﹣1<0,∴当x=时,y有最大值.②如图2中,a、当AC=AF=时,∵BF=2x=﹣1,∴x=.b、当CA=CF时,易知AB=BF=1,∴2x=1,∴x=.c、当FC=FA时,则有(2x)2+22=(1+2x)2,解得x=,综上所述,△ACF为等腰三角形,x的值为或或. 8.解:(1)证明:如图,作OF垂直AB于点F,∵⊙O与BC相切于点E,∴OE⊥BC又∠OBA=∠OBC,∴OE=OF,∴AB为⊙O的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC=4,又D为BC的中点,∴CD=DB=2,∵S△ACD+S△COB+S△AOB=S△ABC设⊙O的半径为r,即AC•CD+BD•r+∴6+2r+5r=12∴r=∴⊙O的半径为(3)解:∵∠C=90°,OE⊥BC,∴OE∥AC,∴Rt△ODE∽Rt△ADC,∴,∴DE=,∴BF=BE=,∴AF=AB﹣BF=,∴tan∠BAD==.
相关试卷
这是一份中考数学二轮专题复习《圆》解答题专项练习五(含答案),共12页。试卷主要包含了4,求出⊙O的半径和BE的长;等内容,欢迎下载使用。
这是一份中考数学二轮专题复习《圆》解答题专项练习四(含答案),共11页。
这是一份中考数学二轮专题复习《圆》解答题专项练习十(含答案),共12页。