北师大版七年级下册3 等可能事件的概率教案
展开等可能事件的概率
【教学目的】
通过等可能事件概率的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。
1.了解基本事件;等可能事件的概念;
2.理解等可能事件的概率的定义,能运用此定义计算等可能事件的概率
【教学重点】
熟练、准确地应用排列、组合知识,是顺利求出等可能事件概率的重要方法。
1.等可能事件的概率的意义:如果在一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 ,如果事件A包含m个结果,那么事件A的概率P(A)= 。
2.等可能事件A的概率公式的简单应用。
【教学难点】
等可能事件概率的计算方法。试验中出现的结果个数n必须是有限的,每个结果出现的可能性必须是相等的。
【教学过程】
一、 复习提问
1.下面事件:①在标准大气压下,水加热到800C时会沸腾。②掷一枚硬币,出现反面。③实数的绝对值不小于零;是不可能事件的有
A. ② B. ① C. ①② D. ③
2.下面事件中:①连续掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在10C结冰。是随机事件的有
A. ② B. ③ C. ① D.②③
3.下列命题是否正确,请说明理由
①“当x∈R时,sinx+cosx≤1”是必然事件;
②“当x∈R时,sinx+cosx≤1”是不可能然事件;
③“当x∈R时,sinx+cosx<2”是随机事件;
④“当x∈R时,sinx+cosx<2”是必然事件;
3.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,问中靶的概率大约是多少?
4.上抛一个刻着1、2、3、4、5、6字样的正六面体方块出现字样为“3”的事件的概率是多少?出现字样为“0”的事件的概率为多少?上抛一个刻着六个面都是“P”字样的正方体方块出现字样为“P”的事件的概率为多少?
二、 新课引入
随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。这种计算随机事件概率的方法,比经过大量重复试验得出来的概率,有更简便的运算过程;有更现实的计算方法。这一节课程的学习,对有关排列、组合的基本知识和基本思考问题的方法有较高的要求。
三、 进行新课
上面我们已经说过:随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。
例如,掷一枚均匀的硬币,可能出现的结果有:正面向上,反面向上。由于硬币是均匀的,可以认为出现这两种结果的可能发生是相等的。即可以认为出现“正面向上”的概率是1/2,出现“反面向上”的概率也是1/2。这与前面表1中提供的大量重复试验的结果是一致的。
又如抛掷一个骰子,它落地时向上的数的可能是情形1,2,3,4,5,6之一。即可能出现的结果有6种。由于骰子是均匀的,可以认为这6种结果出现的可能发生都相等,即出现每一种结果的概率都是1/6。这种分析与大量重复试验的结果也是一致的。
现在进一步问:骰子落地时向上的数是3的倍数的概率是多少?
由于向上的数是3,6这2种情形之一出现时,“向上的数是3的倍数”这一事件(记作事件A)发生。因此事件A的概率P(A)=2/6=1/3
定义1 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。
通常此试验中的某一事件A由几个基本事件组成。如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等。那么每一个基本的概率都是 。如果某个事件A包含的结果有m个,那么事件A的概率P(A)= 。亦可表示为P(A)= 。
四、 课堂举例:
【例题1】有10个型号相同的杯子,其中一等品6个,二等品3个,三等品1个.从中任取1个,取到各个杯子的可能性是相等的。由于是从10个杯子中任取1个,共有10种等可能的结果。又由于其中有6个一等品,从这10个杯子中取到一等品的结果有6种。因此,可以认为取到一等品的概率是 。同理,可以认为取到二等品的概率是3/10,取到三等品的概率是 。这和大量重复试验的结果也是一致的。
【例题2】从52张扑克牌中任意抽取一张(记作事件A),那么不论抽到哪一张都是机会均等的,也就是等可能性的,不论抽到哪一张花色是红心的牌(记作事件B)也都是等可能性的;又不论抽到哪一张印有“A”字样的牌(记作事件C)也都是等可能性的。所以各个事件发生的概率分别为P(A)= =1,P(B)= = ,P(C)= =
在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素。各基本事件均对应于集合I的含有1个元素的子集,包含m个结果的事件A对应于I的含有m个元素的子集A.因此从集合的角度看,事件A的概率是子集A的元素个数(记作card(A))与集合I的元素个数(记作card(I))的比值。即P(A)= =
例如,上面掷骰子落地时向上的数是3的倍数这一事件A的概率P(A)= = =
【例3】 先后抛掷两枚均匀的硬币,计算:
(1)两枚都出现正面的概率;
(2)一枚出现正面、一枚出现反面的概率。
分析:抛掷一枚硬币,可能出现正面或反面这两种结果。因而先后抛掷两枚硬币可能出现的结果数,可根据乘法原理得出。由于硬币是均匀的,所有结果出现的可能性都相等。又在所有等可能的结果中,两枚都出现正面这一事件包含的结果数是可以知道的,从而可以求出这个事件的概率。同样,一枚出现正面、一枚出现反面这一事件包含的结果数是可以知。道的,从而也可求出这个事件的概率。
解:由乘法原理,先后抛掷两枚硬币可能出现的结果共有2×2=4种,且这4种结果出现的可能性都相等。
(1)记“抛掷两枚硬币,都出现正面”为事件A,那么在上面4种结果中,事件A包含的结果有1种,因此事件A的概率
P(A)=1/4
答:两枚都出现正面的概率是1/4。
(2)记“抛掷两枚硬币,一枚出观正面、一枚出现反面”为事件B。那么事件B包含的结果有2种,因此事件B的概率
P(B)=2/4=1/2
答:一枚出现正面、一枚出现反面的概率是1/2。
【例4】 在100件产品中,有95件合格品,5件次品。从中任取2件,计算:
(1)2件都是合格品的概率;
(2)2件都是次品的概率;
(3)1件是合格品、1件是次品的概率。
分析:从100件产品中任取2件可能出现的结果数,就是从、100个元素中任取2个的组合数。由于是任意抽取,这些结果出现的可能性都相等。又由于在所有产品中有95件合格品、5件次品,取到2件合格品的结果数,就是从95个元素中任取2个的组合数;取到2件次品的结果数,就是从5个元素中任取2个的组合数;取到1件合格品、1件次品的结果数,就是从95个元素中任取1个元素的组合数与从5个元素中任取1个元素的组合数的积,从而可以分别得到所求各个事件的概率。
解:(1)从100件产品中任取2件,可能出现的结果共有 种,且这些结果出现的可能性都相等。又在 种结果中,取到2件合格品的结果有 种。记“任取2件,都是’合格品”为事件A,那么事件A的概率
P(A)= / =893/990
答:2件都是合格品的概率为893/990
(2)记“任取2件,都是次品”为事件B。由于在 种结果中,取到2件次品的结果有C52种,事件B的概率
P(B)= / =1/495
答:2件都是次品的概率为1/495
(3)记“任取2件,1件是合格品、I件是次品”为C。由于在 种结果中,取到1件合格品、l件次品的结果有 种,事件C的概率
P(C)= / =19/198
答:1件是合格品、1件是次品的概率为19/198
【例5】 某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开。如果不知道开锁号码,试开一次就把锁打开的概率是多少?
分析:号码锁每个拨盘上的数字,从0到9共有十个。6个拨盘上的各一个数字排在—起,就是一个六位数字号码。根据乘法原理,这种号码共有10的6次方个。由于不知道开锁号码,试开时采用每一个号码的可能性都相等。又开锁号码只有一个,从而可以求出试开一次就把锁打开的概率。
解:号码锁每个拨盘上的数字有10种可能的取法。根据乘法原理,6个拨盘上的数字组成的六位数字号码共有10的6次方个。又试开时采用每一个号码的可能性都相等,且开锁号码只有一个,所以试开一次就把锁打开的概率
P=1/1000000
答:试开一次就把锁打开的概率是1/1000000
五、课堂小结:用本节课的观点求随机事件的概率时,首先对于在试验中出现的结果的可能性认为是相等的;其次是对于通过一个比值的计算来确定随机事件的概率,并不需要通过大量重复的试验。因此,从方法上来说这一节课所提到的方法,要比上一节所提到的方法简便得多,并且更具有实用价值。
六、课堂练习
1.(口答)在40根纤维中,有12根的长度超过30毫米。从中任取1根,取到长度超过30毫米的纤维的概率是多少?
2.在10支铅笔中,有8支正品和2支副品。从中任取2支,恰好都取到正品的概率是多少?
七、布置作业:课本
游戏中的概率
运用概知识解释游戏是否公平合理.
【教学难点】
设计公平合理的游戏规则.
【教学流程】
创设情境
教师活动 | 学生活动 | 设计意图 |
1、从三人中推选一人参加某项活动,该怎么办? | 学生独立思考后发表自己的看法,其他学生补充. | 以同学的亲身经历为切入口,从现实生活中发现并提出问题. |
2、启发学生回答. | 回答自己的想法. | 尝试用数学的方法来决定这件事情. |
3、组织抽签游戏. | 三名候选人抽签. | 抽签过程烘托课堂气氛,激发学生学习热情. |
4、提出问题:抽签方法合理吗? | 表明自己观点. | 让学生大胆猜想,引发思考,展开课堂活动. |
二、探索活动
(一)探究新知
活动一:
教师活动 | 学生活动 | 设计意图 |
1、问题的提出(媒体展示): 现有3张相同的小纸条,分别写有A、B1、B2,把3张纸条放在盒子中摇匀,3名同学去摸纸条,摸到A表示中签.这种抽签的方法合理吗? | 学生独立思考,再与同桌交流. | 把实际问题转化为数学问题,让学生独立思考,使每个同学都尝试解决问题. |
2、交流与发现: 抽签方法合理的依据. | 学生发表观点. | 寻求检验猜想的方法,培养理性思维. |
3、教师板书: 分别求3人中签的概率. | 学生回答. | 教师示范,让学生学会有条理地表达 |
4、思考与交流: 现在假如要从3名同学中选2名同学去呢? 这种方法还公平吗?为什么. | 学生回答. | 强化由中签概率相等判断抽签合理而获得的解决问题的经验. |
(二)迁移延伸
活动二:
教师活动 | 学生活动 | 设计意图 |
1、运用迁移(媒体展示): 小明、小丽两人设计了转盘游戏(教师在黑板上贴上两个转盘),把两个可以自由转动的均匀转盘分别二等份,分别标上字母A、B,规则如下: (1)分别转动转盘甲、乙,两个转盘停止后,指针将指向某个字母; (2)如果指针指向相同的字母,那么小明就得一分;如果指针指向不同的字母,那么小丽就得一分.做10次,得分高者为赢家. 这个游戏对双方公平吗?请说明你的理由. | 独立思考,请同学板演. | 运用双方获胜的概率相等判断游戏对双方公平,体会概率是解决实际问题的重要工具. 通过情境的变化,巩固活动成果,提高学生运用概率知识解决实际问题的能力,让学生体验成功的喜悦,增强学好数学的自信心. |
2、拓展延伸(媒体展示) 小明、小丽两人设计了转盘游戏,把两个可以自由转动的均匀转盘甲二等份,乙三等份,并在各个扇形区内标上数字,规则如下: (1)分别转动转盘甲、乙,两个转盘停止后,指针将指向某个数字; (2)如果指针指向的数字之积是奇数,那么小明就得一分,如果积是偶数,那么小丽就得一分.做10次,得分高者为赢家. 这个游戏对双方公平吗? 如果你认为规则不公平,请你设计使游戏对双方公平的方案. 组织小组活动.教师巡视,并参加到学生的讨论之中.组织小组代表交流、评价. | 小组讨论,推选代表在全班交流,其他小组评价. | 引导学生积极参与问题的讨论,从交流中获益,体会在解决问题的过程中与他人合作的重要性。 请各小组代表发言,并请其他小组评价,让每个同学从交流中获得更大的发展,并培养同学们尊重与理解他人见解的良好习惯. |
三、整理反思
教师活动 | 学生活动 | 设计意图[ |
1、通过本节课的学习,你对游戏公平又有怎样的认识? | 学生口答.
| 直击本节课的数学本质,夯实基础知识,为进一步解决实际问题奠定基础. |
2、你对本节课的知识还存在哪些疑惑吗? | 学生思考交流. | 进一步激起学生的求知欲,为后续学习作铺垫, 师生关系进一步融洽. |
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
数学七年级下册第五章 生活中的轴对称1 轴对称现象教案设计: 这是一份数学七年级下册第五章 生活中的轴对称1 轴对称现象教案设计,共4页。教案主要包含了 教学目标, 教材分析, 教学课型, 教学方法, 教具,教学过程,作业等内容,欢迎下载使用。
北师大版七年级下册4 用尺规作角教案: 这是一份北师大版七年级下册4 用尺规作角教案,共5页。教案主要包含了问题的提出,.新课等内容,欢迎下载使用。
初中数学北师大版七年级下册7 整式的除法教学设计: 这是一份初中数学北师大版七年级下册7 整式的除法教学设计,共10页。教案主要包含了复习回顾,情境引入,探究新知,例题讲解,课堂练习,处理情境问题,知识小结,布置作业等内容,欢迎下载使用。