终身会员
搜索
    上传资料 赚现金
    人教B版高中数学必修第一册3-1-3函数的奇偶性作业含答案
    立即下载
    加入资料篮
    人教B版高中数学必修第一册3-1-3函数的奇偶性作业含答案01
    人教B版高中数学必修第一册3-1-3函数的奇偶性作业含答案02
    人教B版高中数学必修第一册3-1-3函数的奇偶性作业含答案03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性同步达标检测题

    展开
    这是一份高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性同步达标检测题,共11页。试卷主要包含了已知函数f=为R上的偶函数等内容,欢迎下载使用。

    3.1.3 函数的奇偶性

    必备知识基础练

    1.下列图象表示的函数具有奇偶性的是(  )

    2.已知函数f(x)为定义在R上的奇函数,且当x≥0,f(x)=x-1,则当x<0,f(x)= (  )

    A.-x-1 B.x-1 

    C.-x+1 D.x+1

    3.(2021全国甲,12)f(x)是定义域为R的奇函数,f(1+x)=f(-x).f,f=(  )

    A.- B.- C. D.

    4.(2021安徽合肥高一期末)若奇函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2](  )

    A.单调递增,且有最小值f(1)

    B.单调递增,且有最大值f(1)

    C.单调递减,且有最小值f(2)

    D.单调递减,且有最大值f(2)

    5.(多选题)已知函数f(x-2)是定义在R上的偶函数,且对任意的x1,x2[0,+∞)(x1x2),总有>0,则下列结论正确的是(  )

    A.f(-6)<f(0) 

    B.f(0)<f(-3)

    C.f(0)<f(-6) 

    D.f(-3)<f(0)

    6.如果奇函数f(x)在区间[3,7]上是增函数,且最小值是5,那么f(x)在区间[-7,-3]上的最     (”)值为     . 

    7.设函数y=f(x)是偶函数,它在[0,1]上的图象如图所示,则它在[-1,0]上的解析式为.

    8.已知函数f(x)=是奇函数,m=     . 

    9.已知函数f(x)=(x+a)(x+b)(a,bR)R上的偶函数.

    (1)a,b的关系式;

    (2)求关于x的方程f(x)=0的解集.

     

     

     

     

     

     

     

     

     

     

     

     

    10.已知函数f(x)是正比例函数,函数g(x)是反比例函数,f(1)=1,g(1)=2.

    (1)求函数f(x)g(x);

    (2)判断f(x)+g(x)的奇偶性;

    (3)求函数f(x)+g(x)(0,2)上的最小值.

     

     

     

     

     

     

     

     

     

    关键能力提升练

    11.f(x)(-∞,+∞)内的奇函数,f(x+2)=-f(x),0≤x≤1,f(x)=x,f(7.5)等于(  )

    A.0.5 B.-0.5 C.1.5 D.-1.5

    12.(2021陕西西安长安一中高一月考)设函数f(x),g(x)的定义域为R,f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(  )

    A.f(x)g(x)是偶函数 

    B.|f(x)|g(x)是奇函数

    C.f(x)|g(x)|是奇函数 

    D.|f(x)g(x)|是奇函数

    13.已知定义在R上的函数f(x)(-∞,2)上单调递减,f(x+2)为偶函数,f(-1),f(4),f的大小关系为(  )

    A.f(4)<f(-1)<f

    B.f(-1)<f(4)<f

    C.f<f(4)<f(-1)

    D.f(-1)<f<f(4)

    14.已知f(x)是定义在R上的奇函数,x≥0,f(x)=x2+2x,f(2-a2)>f(a),则实数a的取值范围是(  )

    A.(-∞,-1)(2,+∞)

    B.(-1,2)

    C.(-2,1)

    D.(-∞,-2)(1,+∞)

    15.已知f(x)是定义在R上的奇函数,x>0,f(x)=x3+x+1,f(x)的解析式为        . 

    16.判断下列函数的奇偶性.

    (1)f(x)=

    (2)f(x)=

     

     

     

     

     

     

    17.设定义在[-2,2]上的奇函数f(x)=x5+x3+b.

    (1)b的值;

    (2)f(x)[0,2]上单调递增,f(m)+f(m-1)>0,求实数m的取值范围.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    学科素养创新练

    18.(2021吉林高一月考)已知函数f(x)是定义在R上的偶函数,x≥0,f(x)=x2-2x.

    (1)求函数f(x)的单调递增区间;

    (2)求函数f(x)R上的解析式;

    (3)若函数g(x)=f(x)-2ax+2,x[1,2],求函数g(x)的最小值.

     

     

     

     

     

     


    参考答案

     

    3.1.3 函数的奇偶性

    1.B

    2.D x<0,-x>0,因为f(x)是奇函数,所以f(x)=-f(-x)=x+1.

    3.C f(1+x)=f(-x),

    f=f1+=f-.

    f(x)为奇函数,f-=-f,

    f=f1-=f=-f-=-.

    f=.

    4.C 由于奇函数的图象关于原点对称,所以函数f(x)y轴两侧单调性相同.因为f(x)在区间[-2,-1]上单调递减,所以f(x)在区间[1,2]上单调递减,所以f(x)在区间[1,2]上有最大值f(1),最小值f(2),故选C.

    5.CD 因为对任意的x1,x2[0,+∞)(x1x2),>0,不妨设0≤x1<x2,因为>0,所以f(x1-2)-f(x2-2)<0,f(x1-2)<f(x2-2),所以f(x-2)[0,+∞)上是增函数,所以f(x)[-2,+∞)上是增函数.因为f(x-2)是偶函数,所以f(x-2)的图象关于y轴对称,f(x)的图象关于直线x=-2对称,所以f(-6)=f(2),f(-3)=f(-1),f(-3)<f(0)<f(-6).故选CD.

    6. -5 由题意知f(3)=5,根据奇函数在对称区间上的单调性一致并结合图象可得f(x)[-7,-3]上为增函数,且在x=-3处取得最大值,f(-3)=-f(3)=-5.

    7.f(x)=x+2 由题意知f(x)[-1,0]上为一线段,且过(-1,1),(0,2),f(x)=kx+b(k≠0),(-1,1),(0,2)代入得k=1,b=2.

    8.2 x<0,-x>0,

    f(-x)=-(-x)2+2(-x)=-x2-2x.

    f(x)为奇函数,f(-x)=-f(x)=-x2-2x.

    f(x)=x2+2x=x2+mx,m=2.

    9.(1)f(x)=(x+a)(x+b)=x2+(a+b)x+ab是偶函数,f(-x)=f(x)对于xR恒成立,

    (-x)2-(a+b)x+ab=x2+(a+b)x+ab,

    2(a+b)x=0对于xR恒成立,

    a+b=0,b=-a.

    (2)(1)可知,f(x)=x2-a2.

    a=0,f(x)=x2=0,解得x=0;

    a≠0,f(x)=x2-a2=0,解得x=±a.

    综上所述,a=0,方程f(x)=0的解集为{0};

    a≠0,方程f(x)=0的解集为{-a,a}.

    10.(1)f(x)=k1x,g(x)=(k1,k2≠0),

    1=f(1)=k1,2=g(1)=k2,

    f(x)=x,g(x)=.

    (2)h(x)=f(x)+g(x)=x+,

    则其定义域为(-∞,0)(0,+∞),

    h(-x)=-x+=-x+=-h(x),

    f(x)+g(x)为奇函数.

    (3)x(0,2),f(x)+g(x)=x+≥2=2,当且仅当x=>0,x=(0,2)时等号成立,f(x)+g(x)(0,2)上的最小值为2.

    11.B 由已知,可得f(7.5)=f(5.5+2)=-f(5.5)=-f(2+3.5)=-[-f(3.5)]=f(3.5)=f(2+1.5)=-f(1.5)=-f(2-0.5)=-[-f(-0.5)]=f(-0.5)=-f(0.5)=-0.5.

    12.C f(x)是奇函数,g(x)是偶函数,f(-x)=-f(x),g(-x)=g(x),对于A,f(-x)g(-x)=-f(x)g(x),f(x)g(x)是奇函数,A错误;对于B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错误;对于C,f(-x)|g(-x)|=-f(x)|g(x)|,f(x)|g(x)|是奇函数,C正确;对于D,|f(-x)g(-x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错误.故选C.

    13.A 函数y=f(x+2)为偶函数,则函数y=f(x+2)的图象关于y轴对称,函数y=f(x)的图象关于直线x=2对称,f=f-,f(4)=f(0),f(x)(-∞,2)上单调递减,-<-1<0,

    f->f(-1)>f(0),f(4)<f(-1)<f.

    14.C 因为f(x)是奇函数,所以当x<0,f(x)=-x2+2x,作出f(x)的大致图象如图中实线所示,结合图象可知f(x)R上的增函数,f(2-a2)>f(a),2-a2>a,-2<a<1.

    15.f(x)= x<0,-x>0,

    所以f(-x)=(-x)3+(-x)+1=-x3-x+1.

    因为f(x)是奇函数,所以f(-x)=-f(x).

    所以-x3-x+1=-f(x),

    f(x)=x3+x-1.

    所以x<0,f(x)=x3+x-1,

    又因为f(x)是定义在R上的奇函数,所以f(0)=0,

    所以f(x)=

    16.(1)x<0,-x>0,则有

    f(-x)=-(-x)2-x=-(x2+x)=-f(x);

    x>0,-x<0,则有

    f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x).

    综上所述,因为对任意不为0x,都有f(-x)=-f(x)成立,所以f(x)为奇函数.

    (2)f(x)的定义域为(-6,-1][1,6),关于原点对称.

    x(-6,-1],-x[1,6),

    f(-x)=(-x-5)2-4=(x+5)2-4=f(x);

    x[1,6),-x(-6,-1],

    f(-x)=(-x+5)2-4=(x-5)2-4=f(x).

    综上可知,对于任意x(-6,-1][1,6),都有f(-x)=f(x),所以f(x)是偶函数.

    17.(1)因为函数f(x)是定义在[-2,2]上的奇函数,所以f(0)=0,解得b=0(经检验符合题意).

    (2)因为函数f(x)[0,2]上是增函数,f(x)是奇函数,所以f(x)[-2,2]上是增函数.

    因为f(m)+f(m-1)>0,

    所以f(m-1)>-f(m)=f(-m),

    所以m-1>-m, 

    又需要不等式f(m)+f(m-1)>0在函数f(x)定义域内有意义,所以 

    联立①②,解得<m≤2,

    所以实数m的取值范围为,2.

    18.(1)由题意知,x≥0,f(x)=x2-2x=(x-1)2-1,此时函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).

    又函数f(x)为偶函数,所以当x<0,其单调递增区间为(-1,0),所以函数f(x)的单调递增区间为(-1,0),(1,+∞).

    (2)x<0,-x>0,

    所以f(-x)=(-x)2-2(-x)=x2+2x,

    由已知f(x)=f(-x),

    所以当x<0,f(x)=x2+2x,

    所以f(x)=

    (3)(2)可得g(x)=x2-(2a+2)x+2,x[1,2],

    对称轴为直线x=a+1.

    a<0,a+1<1,此时函数g(x)在区间[1,2]上单调递增,故函数g(x)的最小值为g(1)=1-2a;

    0≤a≤1,1≤a+1≤2,此时函数g(x)在对称轴处取得最小值,故函数g(x)的最小值为g(1+a)=-a2-2a+1;

    a>1,a+1>2,此时函数g(x)在区间[1,2]上单调递减,故函数g(x)的最小值为g(2)=2-4a.

    综上,函数g(x)的最小值为g(x)min=

     

    相关试卷

    人教B版 (2019)必修 第一册3.1.3 函数的奇偶性课后作业题: 这是一份人教B版 (2019)必修 第一册3.1.3 函数的奇偶性课后作业题,共10页。试卷主要包含了单选题等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性同步测试题: 这是一份高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性同步测试题,共14页。试卷主要包含了单选题等内容,欢迎下载使用。

    人教B版 (2019)必修 第一册3.1.3 函数的奇偶性练习: 这是一份人教B版 (2019)必修 第一册3.1.3 函数的奇偶性练习,共11页。试卷主要包含了单选题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教B版高中数学必修第一册3-1-3函数的奇偶性作业含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map