年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件

    立即下载
    加入资料篮
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第1页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第2页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第3页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第4页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第5页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第6页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第7页
    人教B版高中数学选择性必修第二册3-1-3组合与组合数课件第8页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)选择性必修 第二册第三章 排列、组合与二项式定理3.1 排列与组合3.1.3 组合与组合数图片ppt课件

    展开

    这是一份高中数学人教B版 (2019)选择性必修 第二册第三章 排列、组合与二项式定理3.1 排列与组合3.1.3 组合与组合数图片ppt课件,共43页。PPT课件主要包含了学习目标,知识梳理·自主探究,师生互动·合作探究,知识探究,答案120,答案28,答案1D,答案25,答案1BCD,答案23或4等内容,欢迎下载使用。
    1.通过实例,理解组合的概念,达成数学抽象的核心素养.2.通过利用计数原理推导组合数公式,达成逻辑推理、数学运算的核心素养.
    1.组合:一般地,从n个不同对象中取出m(m≤n)个对象 一组,称为从n个对象中取出m个元素的一个组合.思考:(1)组合对元素有何要求?提示:(1)组合要求n个元素是不同的,被取出的m个元素也是不同的.(2)组合是有放回抽取还是无放回抽取?提示:(2)无放回抽取,即从n个不同的元素中进行m次不放回取出.
    2.组合数:从n个不同对象中取出m个元素的所有组合的个数,称为从n个不同对象中取出m个元素的组合数,用 表示.
    2.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建造“村村通”工程,共需建公路的条数为    . 
    探究点一 组合与组合数
    探究点二 组合数的性质
    答案:(2)220 3或4
    探究点三 组合数应用
    角度1 有限制条件的组合问题[例3] 某大学学生会从6名女大学生和4名男大学生中选出3名同学去参加志愿者活动.(1)共有多少种不同的选法?
    [例3] 某大学学生会从6名女大学生和4名男大学生中选出3名同学去参加志愿者活动.(2)选出的3名同学中恰有1名男大学生的方法有多少种?
    [例3] 某大学学生会从6名女大学生和4名男大学生中选出3名同学去参加志愿者活动.(3)选出的3名同学中至少有1名男大学生的方法有多少种?
    [例3] 某大学学生会从6名女大学生和4名男大学生中选出3名同学去参加志愿者活动.(4)选出的3名同学中至多有1名男大学生的方法有多少种?
    (2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有(  )A.60种 B.63种 C.65种 D.66种
    解答有限制条件的组合问题的基本方法是“直接法”和“间接法(排除法)”.其中用直接法求解时,应坚持“特殊元素优先选取”的原则,优先安排特殊元素的选取,再安排其他元素的选取.而选择间接法(即先不考虑限制条件计算选法种数,然后排除不满足条件的选法)的原则是“正难则反”,也就是若正面问题分类较多、较复杂或计算量较大,不妨从反面问题入手,试一试看是否简捷些,特别是涉及“至多”“至少”等组合问题时更是如此.
    角度2 几何中的组合问题[例4] 在一个正方体中,各棱、各面对角线和体对角线中,共有多少对异面直线?
    针对训练:平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?
    (1)几何组合问题,主要考查组合的知识和空间想象能力,题目多是以立体几何中的点、线、面的位置关系为背景的排列、组合.这类问题情境新颖,多个知识点交汇在一起,综合性强.(2)解答几何组合问题的思考方法与一般的组合问题基本一样,只要把图形的限制条件视为组合问题的限制条件即可.(3)计算时可用直接法,也可用间接法,要注意在限制条件较多的情况下,需要分类计算符合题意的组合数.
    角度3 分组、分配问题[例5] 6本不同的书按照以下要求处理,各有几种分法?(1)一堆一本,一堆两本,一堆三本;
    [例5] 6本不同的书按照以下要求处理,各有几种分法?(2)一人得一本,一人得两本,一人得三本;
    [例5] 6本不同的书按照以下要求处理,各有几种分法?(3)平均分成三堆;
    [例5] 6本不同的书按照以下要求处理,各有几种分法?(4)平均分给甲、乙、丙三人;
    [例5] 6本不同的书按照以下要求处理,各有几种分法?(5)分给甲、乙、丙三人,每人至少一本.
    (2)2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有    种. 
    (1)分组问题属于“组合”问题,常见的分组问题有三种.①完全均匀分组,每组的元素个数均相等.③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以先分组后分配.
    1.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(   )A.30种 B.35种 C.42种 D.48种
    3.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(   )A.12种B.24种C.30种D.36种

    相关课件

    高中人教B版 (2019)3.1.3 组合与组合数教学ppt课件:

    这是一份高中人教B版 (2019)3.1.3 组合与组合数教学ppt课件,共38页。PPT课件主要包含了新知初探·自主学习,课堂探究·素养提升,所有组合,答案C,答案B,答案D等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册6.2 排列与组合图片ppt课件:

    这是一份人教A版 (2019)选择性必修 第三册6.2 排列与组合图片ppt课件,共23页。PPT课件主要包含了温故知新,新知探究,组合与组合数的区别,连乘形式,阶乘形式,组合数公式,学以致用,方法1组合数的意义,方法2组合数的计算,“一一对应”等内容,欢迎下载使用。

    数学选择性必修 第二册3.1.3 组合与组合数背景图ppt课件:

    这是一份数学选择性必修 第二册3.1.3 组合与组合数背景图ppt课件,文件包含人教B版高中数学选择性必修第二册313第2课时《组合数的性质及应用》课件ppt、人教B版高中数学选择性必修第二册313第2课时《组合数的性质及应用》教案doc等2份课件配套教学资源,其中PPT共41页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map