所属成套资源:2023年中考数学一轮复习课时练习含答案
2023年中考数学一轮复习《概率初步》课时练习(含答案)
展开
这是一份2023年中考数学一轮复习《概率初步》课时练习(含答案),共8页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2023年中考数学一轮复习《概率初步》课时练习一 、选择题1.下列说法正确的是( )A.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨B.随机抛掷一枚均匀的硬币,落地后正面一定朝上C.在装有3个球的布袋里摸出4个球D.在平面内,平行四边形的两条对角线一定相交2.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( )A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水 C.明天肯定下雨D.明天降水的可能性比较大3.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A. B. C. D.14.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是0.4,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为0.25,则原来盒里有白色棋子( ) A.1颗 B.2颗 C.3颗 D.4颗5.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( ) A. B. C. D.6.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为( )A.1 B. C. D.7.某口袋中有20个球,每个球除颜色外都相同,其中白球x个,绿球2x个,其余为黑球,甲从袋中任意摸出一个球,若为绿球则获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.若对甲、乙双方公平,则x等于( )A.3 B.4 C.5 D.68.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A.10粒 B.160粒 C.450粒 D.500粒二 、填空题9.从数﹣2,﹣0.5,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是 .10.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是 .11.如图,一只蚂蚁在正方形ABCD区域爬行,点O是AC与BD的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为 .12.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是_______.13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 14.某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是 (结果精确到0.01).三 、解答题15.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,求使图中阴影部分的图形构成一个轴对称图形的概率; 16.小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由. 17.某学校为了解七年级学生每周课外阅读时间,进行了抽样调查.并将调查结果分为3小时(记为A)、4小时(记为B)、5小时(记为C)、6小时(记为D)根据调查情况制作了两幅统计图,请你结合图中所给信息解答下列问题:(1)请补全条形统计图,扇形统计图中D类所对应扇形的圆心角为 度;(2)抽样调查阅读时间的中位数是 ,众数是 .(3)为了让学生更好的了解“新型冠状病毒”的相关知识以及防治措施,在家做好“肺炎防治”保护好自己和家人不被感染,在本次样本中,调查结果为“D”的同学有5位来自七(1)班,分别为2位女生(记为D1,D2)3位男生(D3,D4,D5),老师准备从5位同学中选出两位共同负责在班级群中宣传肺炎的相关预防知识,请用画树状图或列表的方法求恰好选到一位男生一位女生的概率. 18.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
参考答案1.D2.D3.C4.C.5.B6.B7.B8.C9.答案为:.10.答案为:0.5.11.答案为:.12.答案为:.13.答案为:.14.答案为:0.95.15.解:图中16个小正方形中有12 个白色的小正方形,涂上阴影后,使图中阴影部分的图形构成一个轴对称图形的情况有2种,∴ 16.解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有:(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.17.解:(1)∵被调查的总人数为12÷25%=48 (人),∴C类别人数为48﹣4﹣12﹣14=18(人),补全条形统计图如图所示:扇形统计图中D类所对应扇形的圆心角为105°故答案为:105.(2)将48个数据从小到大排列后,处在第24、25位两个数都是5小时,因此抽样调查阅读时间的中位数是5小时,抽样调查阅读时间出现次数最多的是5小时,因此众数是5小时,故答案为:5小时,5小时.(3)列表如下: D1D2D3D4D5D1 (D2,D1)(D3,D1)(D4,D1)(D5,D1)D2(D1,D2) (D3,D2)(D4,D2)(D5,D2)D3(D1,D3)(D2,D3) (D4,D3)(D5,D3)D4(D1,D4)(D2,D4)(D3,D4) (D5,D4)D5(D1,D5)(D2,D5)(D3,D5)(D4,D5) 由表可知,共有20种等可能结果,其中恰好选到一位男生一位女生的结果数为12,所以恰好抽到一名男生和一名女生的概率为.18.解:(1)总人数=15÷25%=60(人).A类人数=60-24-15-9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200人,200÷20=10个,∴开设10个“实践活动类”课程的班级比较合理.
相关试卷
这是一份中考数学一轮复习课时练习第12单元第35课时概率初步(含答案),共7页。试卷主要包含了下列事件为必然事件的是等内容,欢迎下载使用。
这是一份中考数学一轮复习《概率初步》课时跟踪练习(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习知识梳理《概率初步》练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。