所属成套资源:2023年中考数学一轮复习课时练习含答案
2023年中考数学一轮复习《矩形》课时练习(含答案)
展开
这是一份2023年中考数学一轮复习《矩形》课时练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《矩形》课时练习一 、选择题1.矩形的对角线一定具有的性质是( )A.互相垂直 B.互相垂直且相等 C.相等 D.互相垂直平分2.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否为直角D.测量四边形的其中三个角是否都为直角3.如图,已知▱ABCD的四个内角的角平分线分别交于E,F,G,H.试说明四边形EFGH的形状是( ).A.平行四边形 B.矩形 C.任意四边形 D.不能判断其形状4.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为( )A.1 B.2 C.3 D.45.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20° B.30° C.35° D.55°6.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为( )A.它们周长都等于10cm,但面积不一定相等 B.它们全等,且周长都为10cmC.它们全等,且周长都为5cm D.它们全等,但周长和面积都不能确定7.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则AD:AB的值为( )A. B. C. D.8.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为( ) A.2 B. C.2 D.3二 、填空题9.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEF=70°,则∠AED= .10.边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为 .11.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件 ,使四边形DBCE是矩形.12.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则EF= .13.如图,矩形ABCD中,AB=7cm,BC=3cm,P、Q两点分别从A、B两点同时出发,沿矩形ABCD的边逆时针运动,速度均为1cm/s,当点P到达B点时两点同时停止运动,若PQ长度为5cm时,运动时间为 s.14.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为 .三 、解答题15.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求四边形ABCE的面积.16.如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.(1)求证:四边形ABCD是平行四边形;(2)若AC=2OE,试判断四边形AECF的形状,并说明理由. 17.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. 18.已知,矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为 ;对图(3)的探究结论为 ;
参考答案1.C.2.D.3.B4.B.5.A.6.B.7.B.8.D.9.答案为:55°.10.答案为:70.11.答案为:EB=DC.12.答案为: .13.答案为: 3或714.答案为:(0,).15.解:(1)设EF=x依题意知:△CDE≌△CFE,∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10,∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5,∴S梯形ABCE=(5+8)×6÷2=39.16.证明:(1)∵AB∥CD,∴∠ABD=∠CDB,又∵∠AEF=∠CFB,∴∠AEB=∠CFD,又∵BE=DF,∴△ABE≌△CDF(ASA),∴AB=CD,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,∴OB=OD OA=OC=AC∵BE=DF∴OB﹣BE=DO﹣DF∴OE=OF又∵OA=OC∴四边形AECF是平行四边形又∵AC=2OE,EF=2OE∴AC=EF∴平行四边形AECF是矩形.17. (1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.18.解:结论均是PA2+PC2=PB2+PD2.(1)如答图2,过点P作MN∥AB,交AD于点M,交BC于点N,∴四边形ABNM和四边形NCDM均为矩形,根据(1)中的结论可得,在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,两式相加,得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,∴PA2+PC2=PB2+PD2.(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,∴四边形BCNM和四边形ADNM均为矩形,同样根据(1)中的结论可得,在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,∴PA2+PC2=PB2+PD2.
相关试卷
这是一份中考数学一轮复习考点过关练习《矩形》(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习课时练习第7单元第24课时矩形、菱形、正方形(含答案),共6页。试卷主要包含了下列说法错误的是,四边形具有不稳定性等内容,欢迎下载使用。
这是一份中考数学一轮复习课时练习第23课时 矩形、菱形、正方形 (含答案),共31页。