所属成套资源:2023年中考数学一轮复习课时练习含答案
2023年中考数学一轮复习《菱形》课时练习(含答案)
展开
这是一份2023年中考数学一轮复习《菱形》课时练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《菱形》课时练习一 、选择题1.能判定一个四边形是菱形的条件是( )A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角2.如图,丝带重叠的部分一定是( )A.正方形 B.矩形 C.菱形 D.都有可能3.下列说法中正确的是( ) A.四边相等的四边形是菱形 B.一组对边相等,另一组对边平行的四边形是菱形 C.对角线互相垂直的四边形是菱形 D.对角线互相平分的四边形是菱形4.如图,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F 为垂足,AE=ED ,则∠EBF等于( ) A.75° B.60° C.50° D.45° 5.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为( )A.6cm B.5cm C.4cm D.3cm6.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A.10cm2 B.20cm2 C.40cm2 D.80cm27.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是( ) A.8 B.16 C.8 D.168.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE;②∠AHC=120°;③AH+CH=DH中.正确的是( )A.①② B.①③ C.②③ D.①②③二 、填空题9.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2 cm,四边形OACB的面积为4 cm2.则OC的长为________cm. 10.如图,在菱形ABCD中,∠BAD=80º,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于 .11.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为 cm2.12.两对角线分别是6cm和8cm的菱形面积是 cm2,周长是 cm.13.如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG面积为________.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD.其中正确的结论为________(请将所有正确的序号都填上). 三 、解答题15.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,判断AC与CD的数量关系和位置关系,并说明理由. 16.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积. 17.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图2 18.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.
参考答案1.C2.C.3.B4.B.5.B6.A7.A8.D9.答案为:4.10.答案为:60度 11.答案为:120.12.答案为:24,20.13.答案为:4. 14.答案为:①③④;15. 16.证明:(1)∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE=,BF=BE=2AE=,∴菱形BFDE的面积为:×2=.17.解:(1)C.(2)①证明:∵AD=BC=5,S▱ABCD=15,AE⊥BC,∴AE=3.如图,∵EF=4,∴在Rt△AEF中,AF=5.∴AF=AD=5.又△AEF经平移得到△DE'F',∴AF∥DF',AF=DF',∴四边形AFF'D是平行四边形.又AF=AD,∴四边形AFF'D是菱形.②如图,连接AF',DF.在Rt△DE'F中,∵E'F=E'E-EF=5-4=1,DE'=3,∴DF=.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'=3.∴四边形AFF'D的两条对角线长分别为,3. 18.证明:(1)根据翻折的方法可得EF=EC,∠FEG=∠CEG.又∵GE=GE,∴△EFG≌△ECG.∴FG=GC.∵线段FG是由EF绕F旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8﹣x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=BE.∴G为BE的中点.∴CG=BG=BE.
相关试卷
这是一份中考数学一轮复习课时练习第7单元第24课时矩形、菱形、正方形(含答案),共6页。试卷主要包含了下列说法错误的是,四边形具有不稳定性等内容,欢迎下载使用。
这是一份中考数学一轮复习课时练习第23课时 矩形、菱形、正方形 (含答案),共31页。
这是一份中考数学一轮复习《矩形、菱形与正方形》课时跟踪练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。