年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点专题提优拓展训练

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13 旋转中的全等模型(原卷版).docx
    • 解析
      专题13 旋转中的全等模型(解析版).docx
    专题13 旋转中的全等模型(原卷版)第1页
    专题13 旋转中的全等模型(原卷版)第2页
    专题13 旋转中的全等模型(原卷版)第3页
    专题13 旋转中的全等模型(解析版)第1页
    专题13 旋转中的全等模型(解析版)第2页
    专题13 旋转中的全等模型(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点专题提优拓展训练

    展开

    这是一份专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点专题提优拓展训练,文件包含专题13旋转中的全等模型解析版docx、专题13旋转中的全等模型原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
    (1)正方形中的半角模型
    1.(2021春•平阴县期末)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.
    (1)求证:△AEQ≌△AEF;(2)求证:EF2=DF2+BE2;
    (3)当F是BD的中点时,判断四边形AFEQ的形状,并说明理由.
    (2)等腰三角形中的半角模型
    2.(2021秋•东坡区期末)如图,△ABC是边长为6的等边三角形,BD=CD,∠BDC=120°,以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连结MN,则△AMN的周长是 .
    3.(绍兴中考)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
    类型二 对角互补且一组邻边相等的半角模型
    4.(2022春•简阳市期中)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于433;④△BDE周长的最小值为6.上述结论中正确的有 (写出序号).
    5.(2022秋•西城区校级期中)(1)问题背景.
    如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是线段BC、线段CD上的点.若∠BAD=2∠EAF,试探究线段BE、EF、FD之间的数量关系.
    小明同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG.再证明△AEF≌△AGF,可得出结论,他的结论应是 .
    (2)猜想论证.
    如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E在线段BC上、F在线段CD延长线上.若∠BAD=2∠EAF,上述结论是否依然成立?若成立说明理由;若不成立,试写出相应的结论并给出你的证明.
    (3)拓展应用.
    如图3,在四边形ABCD中,∠BDC=45°,连接BC、AD,AB:AC:BC=3:4:5,AD=4,且∠ABD+∠CBD=180°.则△ACD的面积为 .
    6.(2020秋•海淀区期中)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
    (1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为 .(不需要证明);
    (2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
    类型三 手拉手模型——旋转全等
    7.(2022•沈阳)【特例感知】
    (1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是 ;
    【类比迁移】
    (2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.
    8.(2022春•南山区期末)如图1.△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿射线OM方向以1cm/s的速度运动,当D不与点A重合时,将线段CD绕点C逆时针方向旋转60°得到CE,连接DE、BE,设点D运动了ts,
    (1)点D的运动过程中,线段AD与BE的数量关系是 ,请以图1情形为例(当点D在线段OA上时,点D与点A不重合),说明理由,
    (2)当6<t<10时,如图2,△BDE周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由.
    (3)当点D在射线OM上运动时,是否存在以D、B、E为顶点的三角形是直角三角形?若存在,直接写出此时t的值 .
    类型三 中点旋转模型
    9.(2019春•双流区期末)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
    (1)求证:EG=CG;
    (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
    类型五 通过旋转构造三角形全等
    10.(2021春•雨花区期中)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为22、1、10,则正方形ABCD的面积为 .
    11.(2022春•顺德区校级月考)如图,等边三角形ABC内有一点P,分别连结AP、BP、CP,若AP=6,BP=8,CP=10.
    (1)则线段AP、BP、CP构成的三角形是 三角形(填“钝角、直角、锐角”);
    (2)将△BPA绕点B顺时针旋转60°,画出旋转后的△BP1A1,并由此求出∠BP1A1的度数;
    (3)求三角形ABC的面积.
    12.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
    问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=42.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是 .

    相关试卷

    专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点拓展训练(解析版):

    这是一份专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点拓展训练(解析版),共25页。试卷主要包含了对角互补模型,手拉手模型——旋转全等,通过旋转构造三角形全等等内容,欢迎下载使用。

    专题39 几何图形模型胡不归问题专项训练-2023年中考数学二轮复习核心考点专题提优拓展训练:

    这是一份专题39 几何图形模型胡不归问题专项训练-2023年中考数学二轮复习核心考点专题提优拓展训练,文件包含专题39几何图形模型胡不归问题专项训练解析版docx、专题39几何图形模型胡不归问题专项训练原卷版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    专题33 从全等到相似类比探究-2023年中考数学二轮复习核心考点专题提优拓展训练:

    这是一份专题33 从全等到相似类比探究-2023年中考数学二轮复习核心考点专题提优拓展训练,文件包含专题33从全等到相似类比探究解析版docx、专题33从全等到相似类比探究原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map