【中考一轮复习】2023年中考数学人教版单元检测卷——专题07 平面直角坐标系(原卷版+解析版)
展开(试卷满分120分,答题时间120分钟)
一、选择题(共10小题,每题3分,共30分)
1.在平面直角坐标系中,将点向右平移个单位得到点,则点关于轴的对称点的坐标为( )
A. B. C. D.
【答案】A
【解析】先根据点向右平移个单位点的坐标特征:横坐标加3,纵坐标不变,得到点的坐标,再根据关于轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.
∵将点向右平移个单位,
∴点的坐标为:(0,2),
∴点关于轴的对称点的坐标为:(0,-2).
【点拨】本题考查平移时点的坐标特征及关于轴的对称点的坐标特征,熟练掌握对应的坐标特征是解题的关键.
2. 点P(4,3)所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】A.
【解析】考点是平面直角坐标系中各象限点的特征.根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P(4,3)位于第一象限. 故选A.
3. 已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
【答案】D
【解析】考点是关于原点对称的点的坐标.关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.
4. (2022广西河池)如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )
A. B. C. D.
【答案】D
【解析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.
∵点P(m,1+2m)在第三象限内,
∴,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
故选D.
【点睛】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.
5. (2022浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
A. 1cmB. 2cmC. (-1)cmD. (2-1)cm
【答案】D
【解析】先求出BD,再根据平移性质求得=1cm,然后由求解即可.
由题意,BD=cm,
由平移性质得=1cm,
∴点D,之间的距离为==()cm,
故选:D.
【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.
6. (2022广西百色)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为( )
A. (3,-3)B. (3,3)C. (-1,1)D. (-1,3)
【答案】D
【解析】根据图形的平移性质求解.
根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.
【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.
7.(2022广西柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是( )
A. (1,1)B. (1,2)C. (2,1)D. (2,2)
【答案】D
【解析】根据综合楼和食堂的坐标分别是(4,1)和(5,4),先确定坐标原点以及坐标系,再根据教学楼的位置可得答案.
如图,根据综合楼和食堂的坐标分别是(4,1)和(5,4),画图如下:
∴教学楼的坐标为:
故选D
【点睛】本题考查的是根据位置确定点的坐标,熟练的根据已知条件建立坐标系是解本题的关键.
8.(2022山东青岛)如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是( )
A. B. C. D.
【答案】C
【解析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.
先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',
由图像可知A'(-1,-3),
故选:C.
【点睛】本题考查了图形平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.
9.(2022广东)在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是( )
A. B. C. D.
【答案】A
【解析】把点的横坐标加2,纵坐标不变,得到,就是平移后的对应点的坐标.
点向右平移2个单位长度后得到的点的坐标为.
故选A.
【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.
10.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标
是( )
A.(﹣2,﹣4) B.(﹣2,4) C.(2,﹣3) D.(﹣1,﹣3)
【答案】A.
【解析】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).
二、填空题(共10小题,每空3分,共30分)
1.(2021大连)在平面直角坐标系中,将点P(﹣2,3)向右平移4个单位长度,得到点P′,则点P′的坐标是 .
【答案】(2,3).
【解析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.
点P(﹣2,3)向右平移4个单位长度后得到点P′的坐标为(﹣2+4,3),即(2,3).
2. (2022浙江金华)如图,在中,.把沿方向平移,得到,连结,则四边形的周长为_____.
【答案】
【解析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.
∵,
∴AB=2BC=4,
∴AC=,
∵把沿方向平移,得到,
∴,, ,
∴四边形的周长为:,
故答案为:.
【点睛】考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.
3. (2022济南)规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点按序列“011…”作变换,表示点O先向右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到…依次类推.点经过“011011011”变换后得到点的坐标为______.
【答案】
【解析】根据题意得出点坐标变化规律,进而得出变换后的坐标位置,进而得出答案.
点按序列“011011011”作变换,表示点先向右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到,然后右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到,然后右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到.
故答案为:
【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键.
4. (2022浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为______.
【答案】8
【解析】根据平移的性质即可求解.
由平移的性质S△A′B′C′=S△ABC,BC=B′C′,BC∥B′C′,
∴四边形B′C′CB为平行四边形,
∵BB′⊥BC,
∴四边形B′C′CB为矩形,
∵阴影部分的面积=S△A′B′C′+S矩形B′C′CB-S△ABC
=S矩形B′C′CB
=4×2
=8(cm2).
故答案为:8.
【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
5.(2022贵州毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点;把点向上平移2个单位,再向左平移2个单位,得到点;把点向下平移3个单位,再向左平移3个单位,得到点;把点向下平移4个单位,再向右平移4个单位,得到点;…;按此做法进行下去,则点的坐标为_________.
【答案】
【解析】先根据平移规律得到第n次变换时,相当于把点的坐标向右或向左平移n个单位长度,再向右或向上平移n个单位长度得到下一个点,然后推出每四次坐标变换为一个循环,每一个循环里面横坐标不发生变化,纵坐标向下平移4个单位长度,从而求出点A8的坐标为(0,-8),由此求解即可.
【详解】∵把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点;把点向上平移2个单位,再向左平移2个单位,得到点;把点向下平移3个单位,再向左平移3个单位,得到点;把点向下平移4个单位,再向右平移4个单位,得到点,
∴第n次变换时,相当于把点的坐标向右或向左平移n个单位长度,再向右或向上平移n个单位长度得到下一个点,
∵O到A1是向右平移1个单位长度,向上平移1个单位长度,A1到A2是向左2个单位长度,向上平移2个单位长度,A2到A3是向左平移3个单位长度,向下平移3个单位长度,A3到A4是向右平移4个单位长度,向下平移4个单位长度,A4到A5是向右平移5个单位长度,向上平移5个单位长度,
∴可以看作每四次坐标变换为一个循环,每一个循环里面横坐标不发生变化,纵坐标向下平移4个单位长度,
∴点A8的坐标为(0,-8),
∴点A8到A9的平移方式与O到A1的方式相同(只指平移方向)即A8到A9向右平移9个单位,向上平移9个单位,
∴A9的坐标为(9,1),
同理A9到A10的平移方式与A1到A2的平移方式相同(只指平移方向),即A9到A10向左平移10个单位,向上平移10个单位,
∴A10的坐标为(-1,11),
故答案为:(-1,11).
【点睛】本题主要考查了点的坐标规律探索,正确找到规律是解题的关键.
6.(2022云南) 点A(1,-5)关于原点的对称点为点B,则点B的坐标为______.
【答案】(-1,5)
【解析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.
∵点A(1,-5)关于原点的对称点为点B,
∴点B的坐标为(-1,5).
故答案为:(-1,5)
【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.
7.(2022甘肃兰州)如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.
【答案】
【解析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;
如图,
根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,
∴黄河母亲像的坐标是 .
故答案为:.
【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征是解题的关键.
8.点P(m,2)在第二象限内,则m的值可以是(写出一个即可) .
【答案】﹣2(答案不唯一).
【解析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.
∵点P(m,2)在第二象限内,
∴m<0,
则m的值可以是﹣2(答案不唯一).
9.已知m为整数,且点(12-4m,19-3m)在第二象限,则m2+2005的值为______.
【答案】见解析。
【解析】由已知得12-4m<0,19-3m>0,∴3
10. (2022大连)如图,在平面直角坐标系中,点A的坐标是,将线段向右平移4个单位长度,得到线段,点A的对应点C的坐标是_______.
【答案】
【解析】由将线段向右平移4个单位长度,可得点A向右边平移了4个单位与C对应,再利用“右移加”即可得到答案.
【详解】解:∵将线段向右平移4个单位长度,
∴点A向右边平移了4个单位与C对应,
∴ 即
故答案为:
【点睛】考查平移的坐标变化规律,熟记“右移加,左移减,上移加,下移减”是解本题的关键.
三、解答题(本大题有6道小题,共60分)
1.(8分)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,求a+b的值.
【答案】﹣5.
【解析】利用轴对称的性质求出等Q的坐标即可.
∵点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,
∴a=﹣2,b=﹣3,
∴a+b=﹣2﹣3=﹣5。
2.(8分)已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,求点P的坐标。
【答案】(1,-2)
【解析】由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2.又因为垂足在y轴的负半轴上,则纵坐标为-2.由点P到y轴的距离为1,可知点P的横坐标的绝对值为1.又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B.
易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P到x轴的距离”对应的是纵坐标的绝对值,与“点P到y轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.
3.(8分)如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.
【答案】见解析
【解析】根据棋子B在(2,1)处,确定棋子B所在行与列的顺序,再由此利用有序数对表示出其他各棋子的位置.
A(0,0),C(3,3),D(1,2),E(4,1),F(2,4),G(5,4).
方法总结:有序数对中,数的顺序需事先规定,如果规定表示列的数在前,那么表示行的数在后,然后按照这个规定来表示有序数对.
4.(12分)如图是小明家O和学校A所在地的简单地图.已知OA=2cm,OB=2.5cm,OP=4cm,C为OP的中点.
回答下列问题:
(1)图中距小明家距离相同的是哪些地方?
(2)商场B、学校A、公园C、停车场P分别在小明家的什么方向?
(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?
【答案】见解析
【解析】由图分析A,B,C,P四点到点O的距离,即可得出(1)的答案;由方位角的概念,可得(2)的答案;由题意可得比例尺,进而可得(3)的答案.
(1)图中距小明家距离相同的是A与C;
(2)商场B在小明家的北偏西30°方向;学校A在小明家的东北方向;公园C、停车场P在小明家的南偏东60°方向;
(3)学校距离小明家400m,而OA=2cm,故比例尺为1∶20000.故商场距离小明家2.5×20000÷100=500(m);停车场距离小明家4×20000÷100=800(m).
方法总结:这种表示位置的方法是通过两个数据来确定的:一是方位角(角的大小);二是距离(距观察点的距离).
5.(12分)已知点A(﹣1,﹣2),点B(1,4)
(1)试建立相应的平面直角坐标系;
(2)描出线段AB的中点C,并写出其坐标;
(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.
【答案】(1)坐标系如图:
(2)C(0,1);(3)平移规律是(x+3,y),所以A1(2,﹣2),B1(4,4),C1(3,1).
【解析】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
画出平面直角坐标系后描出线段AB的中点C,根据平移的规律求出线段A1B1两个端点及线段中点C1的坐标为A1(2,﹣2),B1(4,4),C1(3,1).
6.(12分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)
(1)求点C到x轴的距离;
(2)求△ABC的面积;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.
【答案】(1)3(2)18(3)(0,1)或(0,5)
【解析】本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.
(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;
∵C(﹣1,﹣3),
∴|﹣3|=3,
∴点C到x轴的距离为3;
(2)根据三角形的面积公式列式进行计算即可求解;
∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)
∴AB=4﹣(﹣2)=6,点C到边AB的距离为:3﹣(﹣3)=6,
∴△ABC的面积为:6×6÷2=18.
(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(﹣2,3)、B(4,3),所以,即|x﹣3|=2,所以x=5或x=1,即可解答.
设点P的坐标为(0,y),
∵△ABP的面积为6,A(﹣2,3)、B(4,3),
∴6×|y﹣3|=6,
∴|y﹣3|=2,
∴y=1或y=5,
∴P点的坐标为(0,1)或(0,5).
【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题23旋转解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题23旋转原卷版doc等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。