【中考一轮复习】2023年中考数学人教版单元检测卷——专题22 二次函数(原卷版+解析版)
展开(试卷满分120分,答题时间120分钟)
一、选择题(共10小题,每题3分,共30分)
1. (2022陕西)已知二次函数y=x2−2x−3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当−1
A. B. C. D.
【答案】B
【解析】先求得抛物线的对称轴为直线x=1,抛物线与x轴的交点坐标,画出草图,利用数形结合,即可求解.
y=x2−2x−3=(x-1)2-4,
∴对称轴为直线x=1,
令y=0,则(x-1)2-4=0,
解得x1=-1,x2=3,
∴抛物线与x轴的交点坐标为(-1,0),(3,0),
二次函数y=x2−2x−3的图象如图:
由图象知.
【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用数形结合解题是关键.
2.(2022浙江绍兴)已知抛物线的对称轴为直线,则关于x的方程的根
是( )
A. 0,4B. 1,5C. 1,-5D. -1,5
【答案】D
【解析】根据抛物线的对称轴为直线可求出m的值,然后解方程即可.
抛物线的对称轴为直线,
,
解得,
关于x的方程为,
,
解得,
故选:D.
【点睛】考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.
3. (2022浙江宁波)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为( )
A. B. C. D.
【答案】B
【解析】根据y1<y2列出关于m的不等式即可解得答案.
∵点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上,
∴y1=(m-1-1)2+n=(m-2)2+n,
y2=(m-1)2+n,
∵y1<y2,
∴(m-2)2+n<(m-1)2+n,
∴(m-2)2-(m-1)2<0,
即-2m+3<0,
∴m>,
故选:B.
【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.
4. (2022广西贺州)已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.
∵二次函数y=2x2-4x-1=2(x-1)2-3,
∴抛物线对称轴为x=1,顶点(1,-3),
∵1>0,开口向上,
∴在对称轴x=1的右侧,y随x的增大而增大,
∵当0≤x≤a时,即在对称轴右侧,y取得最大值为15,
∴当x=a时,y=15,
∴2(a-1)2-3=15,
解得:a=4或a=-2(舍去),
故a的值为4.
【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.
5.(2022湖南株洲)已知二次函数,其中、,则该函数的图象可能
为( )
A. B. C. D.
【答案】C
【解析】【分析】利用排除法,由得出抛物线与y轴交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴,得出,抛物线开口向下,排除B选项,即可得出C为正确答案.
对于二次函数,
令,则,
∴抛物线与y轴的交点坐标为
∵,
∴,
∴抛物线与y轴的交点应该在y轴的负半轴上,
∴可以排除A选项和D选项;
B选项和C选项中,抛物线的对称轴,
∵ ,
∴,
∴抛物线开口向下,可以排除B选项.
【点睛】考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键.
6. (2022浙江杭州)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
A. 命题①B. 命题②C. 命题③D. 命题④
【答案】A
【解析】根据对称轴为直线,确定a的值,根据图像经过点(3,0),判断方程的另一个根为x=-1,位于y轴的两侧,从而作出判断即可.
假设抛物线的对称轴为直线,
则,
解得a= -2,
∵函数的图像经过点(3,0),
∴3a+b+9=0,
解得b=-3,
故抛物线的解析式为,
令y=0,得,
解得,
故抛物线与x轴的交点为(-1,0)和(3,0),
函数的图像与x轴的交点位于y轴的两侧;
故命题B,C,D都是正确,A错误,
故选A.
【点睛】本题考查了待定系数法确定解析式,抛物线与x轴的交点,对称轴,熟练掌握待定系数法,抛物线与x轴的交点问题是解题的关键.
7. (2022山东青岛)已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )
A B. C. D.
【答案】D
【解析】图象开口向下,得a<0, 对称轴为直线,得b=2a,则b<0,图象经过,根据对称性可知,图象经过点,故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.
∵图象开口向下,
∴a<0,
∵对称轴为直线,
∴b=2a,
∴b<0,故A不符合题意;
根据对称性可知,图象经过,
∴图象经过点,
当x=1时,a+b+c=0,故C不符合题意;
∴c=-a-b,
∴c>0,故B不符合题意;
将b=2a代入,可知3a+c=0,故D符合题意.
故选:D.
【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.
8. (2022浙江温州)已知点都在抛物线上,点A在点B左侧,下列选项正确的是( )
A. 若,则B. 若,则
C. 若,则D. 若,则
【答案】D
【解析】画出二次函数的图象,利用数形结合的思想即可求解.
当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项C错误,选项D正确;
当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项A、B都错误;
故选:D
【点睛】本题考查了二次函数的图象和性质,借助图象,利用数形结合的思想解题的解决问题的关键.
9. 已知实数a,b满足,则代数式的最小值等于( )
A. 5B. 4C. 3D. 2
【答案】A
【解析】由已知得b=a+1,代入代数式即得a2-4a+9变形为(a-2)2+5,再根据二次函数性质求解.
∵b-a=1,
∴b=a+1,
∴a2+2b-6a+7
=a2+2(a+1)-6a+7
=a2-4a+9
=(a-2)2+5,
∵(a-2)2≥0,
∴当a=2时,代数式a2+2b-6a+7有最小值,最小值为5,
故选:A.
【点睛】本题考查二次函数的最值,通过变形将代数式化成(a-2)2+5是解题的关键.
10. (2022山东日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为,且经过点(-1,0).下列结论:①3a+b=0;②若点,(3,y2)是抛物线上的两点,则y1
【答案】C
【解析】由对称轴为即可判断①;根据点,(3,y2)到对称轴的距离即可判断②;由抛物线经过点(-1,0),得出a-b+c=0,对称轴,得出,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.
【详解】解:∵对称轴,
∴b=-3a,
∴3a+b=0,①正确;
∵抛物线开口向上,点到对称轴的距离小于点(3,y2)的距离,
∴y1
∴a-b+c=0,
∵对称轴,
∴,
∴,
∴3c=4b,
∴4b-3c=0,故③错误;
∵对称轴,
∴点(0,c)的对称点为(3,c),
∵开口向上,
∴y≤c时,0≤x≤3.故④正确;
故选:C.
【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
二、填空题(共8小题,每空3分,共24分)
1. (2022贵州六盘水)如图是二次函数的图像,该函数的最小值是__________.
【答案】
【解析】先根据二次函数的对称轴为直线可求出的值,再将点代入可求出的值,然后求出时,的值即可得.
由图像可知,此函数的对称轴为直线,函数的图像经过点,
则,,
解得,
将代入得:,解得,
则二次函数的解析式为,
当时,,
即该函数的最小值是,
故答案为:.
【点睛】本题考查了二次函数的图像、以及最值,读懂二次函数的图像是解题关键.
2. (2022四川遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.
【答案】
【解析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=-1代入解析式求解.
∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴左侧,
∴-<0,
∴b>0,
∵抛物线经过(0,-2),
∴c=-2,
∵抛物线经过(1,0),
∴a+b+c=0,
∴a+b=2,b=2-a,
∴y=ax2+(2-a)x-2,
当x=-1时,y=a+a-2-2=2a-4,
∵b=2-a>0,
∴0<a<2,
∴-4<2a-4<0,
故答案为:-4<m<0.
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.
3. (2022内蒙古呼和浩特)在平面直角坐标系中,点和点的坐标分别为和,抛物线与线段只有一个公共点,则的取值范围是______.
【答案】或
【解析】【分析】根据抛物线求出对称轴,轴的交点坐标为,顶点坐标为,直线CD的表达式,分两种情况讨论:当时,当时,利用抛物线的性质可知,当越大,则抛物线的开口越小,即可求解.
【详解】抛物线的对称轴为:,当时,,故抛物线与轴的交点坐标为,顶点坐标为,直线CD的表达式,
当时,且抛物线过点时,
,解得(舍去),
当,抛物线与线段只有一个公共点时,
即顶点在直线CD上,则,解得,
当时,且抛物线过点时,
,解得,
由抛物线的性质可知,当越大,则抛物线的开口越小,且抛物线与线段只有一个公共点,
∴,且,
解得,
综上所述,的取值范围为或,
故答案为或.
【点睛】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.
4. (2022四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.
【答案】 ①. ②.
【解析】根据题意,得-45+3m+n=0,,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可.
根据题意,得-45+3m+n=0,,
∴ ,
∴ ,
解得m=50,m=10,
当m=50时,n=-105;当m=10时,n=15;
∵抛物线与y轴交于正半轴,
∴n>0,
∴,
∵对称轴为t==1,a=-5<0,
∴时,h随t的增大而增大,
当t=1时,h最大,且(米);当t=0时,h最最小,且(米);
∴w=,
∴w的取值范围是,
故答案为:.
当时,的取值范围是
∵对称轴为t==1,a=-5<0,
∴时,h随t的增大而减小,
当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);
∴w=,w=,
∴w的取值范围是,
故答案为:.
【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.
5. (2022福建)已知抛物线与x轴交于A,B两点,抛物线与x轴交于C,D两点,其中n>0,若AD=2BC,则n的值为______.
【答案】8
【解析】先求出抛物线与x轴的交点,抛物线与x轴的交点,然后根据,得出,列出关于n的方程,解方程即可。
把y=0代入得:,
解得:,,
把y=0代入得:,
解得:,,
∵,
∴,
∴,
即,
,
令,则,
解得:,,
当时,,解得:,
∵,
∴不符合题意舍去;
当时,,解得:,
∵,
∴符合题意;
综上分析可知,n的值为8.
【点睛】本题主要考查了抛物线与x轴的交点问题,根据题意用n表示出,列出关于n的方程是解题的关键.
6. (2022黑龙江大庆)已知函数的图象与坐标轴恰有两个公共点,则实数m的值为____________.
【答案】1或
【解析】函数图象与坐标轴恰有两个公共点,则分两种情况:第一种情况,函数图象过原点;第二种情况,函数图象与x轴只有一个交点,分别计算即可
当函数图象过原点时,函数的图象与坐标轴恰有两个公共点,
此时满足,解得;
当函数图象与x轴只有一个交点且与坐标轴y轴也有一个交点时,
此时满足,解得或,
当是,函数变为与y轴只有一个交点,不合题意;
综上可得,或时,函数图象与坐标轴恰有两个公共点.
故答案为:1或
【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质.
7. (2022甘肃威武)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间_________s.
【答案】2
【解析】把一般式化为顶点式,即可得到答案.
∵h=-5t2+20t=-5(t-2)2+20,
且-5<0,
∴当t=2时,h取最大值20.
【点睛】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
8. (2022四川绵阳)如图,二次函数的图象关于直线对称,与x轴交于,两点,若,则下列四个结论:①,②,③,④.
正确结论的个数为__________
【答案】 2个
【解析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.
【详解】∵对称轴为直线x=1,-2
∵ = 1,
∴b=- 2а,
∴3a+2b= 3a-4a= -a,
∵a>0,
∴3a+2b<0,②错误;
∵抛物线与x轴有两个交点,
∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,
∴a-b+c<0,
∴a+c∵a>0,
∴b=-2a<0,
∴a+c<0,
∴b2 -4ac > a+ c,
∴b2>a+c+4ac,③正确;
∵抛物线开口向上,与y轴的交点在x轴下方,
∴a>0,c<0,
∴a>c,
∵a-b+c<0,b=-2a,
∴3a+c<0,
∴c<-3a,
∴b=–2a,
∴b>c,以④错误。
【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
三、解答题(本大题有6道小题,共66分)
1. (10分)(2022山东济宁)已知抛物线与x轴有公共点.
(1)当y随x的增大而增大时,求自变量x的取值范围;
(2)将抛物线先向上平移4个单位长度,再向右平移n个单位长度得到抛物线(如图所示),抛物线与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
(3)D为抛物线的顶点,过点C作抛物线的对称轴l的垂线,垂足为G,交抛物线于点E,连接BE交l于点F.求证:四边形CDEF是正方形.
【答案】(1) (2)n=2 (3)见解析
【解析】【分析】(1)根据抛物线与轴由公共点,可得,从而而求出的值,进而求得抛物线对称轴,进一步得到结果;
(2)根据图像平移的特征可求出平移后抛物线的解析式,根据和分别得出点和的坐标,根据列出方程,进而求的结果;
(3)从而得出点、点的坐标,由抛物线的解析式可得出点的坐标和点的坐标,进而求得的解析式,从而得出点的坐标,进而得出,进一步得出结论.
【小问1详解】
解:∵抛物线与x轴有公共点,
∴
∴∴.
∴,
∴,
∵,
∴当时,y随着x的增大而增大.
【小问2详解】
解:由题意,得,
当y=0时,,
解得:或,
∵点A在点B右侧,
∴点A的坐标为(1+n,0),点B的坐标为(-3+n,0).
∵点C的坐标为(0,-n2 +2n+3),
∴n+1=-n2+2n+3.
解得:n=2或n=-1(舍去).
故n的值为2.
【小问3详解】
解:由(2)可知:抛物线C2的解析式为y=-(x-1)2+4.
∴点A的坐标为(3,0),点B的坐标为(-1,0)
点C的坐标为(0,3),点D的坐标为(1,4),
抛物线C2的对称轴是直线x=1,
∵点E与点C关于直线x=1对称,
∴点E的坐标为(2,3).
∴点G的坐标为(1,3).
设直线BE解析式为y=kx+b,
∴
解得:
∴y=x+1.
当x=1时,y=1+1=2.点F的坐标为(1,2).
∴FG=EG=DG=CG=1.
∴四边形CDEF为矩形.
又∵CE⊥DF,
∴四边形CDEF为正方形.
【点睛】本题主要考查二次函数的图像与性质,求一次函数的解析式,平移图像的特征,正方形的判定,解决问题的关键是平移前后抛物线解析式之间的关系.
2.(10分) (2022浙江丽水)如图,已知点在二次函数的图象上,且.
(1)若二次函数的图象经过点.
①求这个二次函数的表达式;
②若,求顶点到的距离;
(2)当时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
【答案】(1)①;② (2)
【解析】【分析】(1)①将点代入中即可求出二次函数表达式;
②当时,此时为平行x轴的直线,将代入二次函数解析式中求出,再由求出直线为,最后根据二次函数顶点坐标即可求解;
(2)先求出二次函数的最小值在对称轴时取得为-1,然后根据和两种情况考虑自变量离对称轴的远近来确定二次函数的最大值即可求解.
解:(1)①将点代入中,
∴,
解出,
∴二次函数的表达式为:;
②当时,此时为平行x轴的直线,
将代入二次函数中得到:,
将代入二次函数中得到:,
∵,
∴=,
整理得到:,
又∵,代入上式得到:,
解出,
∴,即直线为:,
又二次函数的顶点坐标为(2,-1),
∴顶点(2,-1)到的距离为.
(2)解:二次函数的对称轴为直线,
当,点M、N在对称轴的异侧,
∴二次函数的最小值为当时取得,此时最小值为,
接下来分类讨论:
情况一:当,即时,结合已知条件,解出,
此时二次函数的最大值为时取得,且最大值为,
∵二次函数的最大值与最小值的差为1,
∴,
∴,
又∵,
∴,
∴此时a的取值范围为;
情况二:当,即时,结合已知条件,解出,
此时二次函数的最大值为时取得,且最大值为,
∵二次函数的最大值与最小值的差为1,
∴,
∴,
又∵,
∴,
∴此时a的取值范围为;
综上所述,a的取值范围为.
【点睛】本题考察了待定系数法求二次函数的解析式,二次函数图像与性质及二次函数的最值等问题:当开口向上(向下)时,自变量的取值离对称轴越远,其对应的函数值就越大(越小) .
3.(10分)(2022广西百色) 已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF :
(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
【答案】(1)
(2)见解析 (3)存在,或
【解析】【分析】(1)设抛物线的表达式为,将A(-1,0)、B(0、3)、C(3,0)代入,直接利用待定系数法求解即可;
(2)由正方形的性质可得,即可证明,根据全等三角形的性质即可求证;
(3)分别讨论:当点M在线段BD的延长线上时,当点M在线段BD上时,依次用代数法和几何法求解即可.
【详解】(1)设抛物线的表达式为,
将A(-1,0)、B(0、3)、C(3,0)代入,
得,解得,
抛物线的表达式为;
(2)四边形OBDC是正方形,
,
,
,
;
(3)存在,理由如下:
当点M在线段BD的延长线上时,此时,
,
设,
设直线OM的解析式为,
,
解得,
直线OM的解析式为,
设直线BC的解析式为,
把B(0、3)、 C(3,0)代入,得,
解得,
直线BC的解析式为,
令,解得,则,
,
四边形OBDC是正方形,
,
,
,
,
,
解得或或,
点M为射线BD上一动点,
,
,
,
当时,解得或,
,
.
当点M线段BD上时,此时,,
,
,
,
由(2)得,
四边形OBDC是正方形,
,
,
,
,
,
,
,
,
;
综上,ME的长为或.
【点睛】本题考查了待定系数法求二次函数解析式,求一次函数解析式,正方形的性质,全等三角形的判定和性质,解直角三角形等,熟练掌握知识点是解题的关键.
4. (12分)(2022广西贺州)如图,抛物线过点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上一动点,当是以BC为底边的等腰三角形时,求点P的坐标;
(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得?若存在,求出点M的横坐标;若不存在,请说明理由.
【答案】(1);
(2)点P坐标为;
(3)存在,
【解析】【分析】(1)把代入即可的得出抛物线解析式;
(2)依题意可得出即P点在的平分线上且在抛物线的对称轴上利用等腰三角形的性质,即可得出P点的坐标;
(2)利用铅垂线ME,即可表达出,再由即可列出方程求解.
详解】(1)根据题意,得
,
解得,
抛物线解析式为:.
(2)由(1)得,
点,且点,
.
∵当是以BC为底边的等腰三角形
∴PC=PB,
∵OP=OP,
∴,
∴,
设抛物线的对称轴与轴交于H点,则,
∴,
∴,
∵抛物线对称轴,
∴,
∴,
.
点P坐标为.
(3)存在.
理由如下:过点M作轴,交BC于点E,交x轴于点F.
设,则,
设直线BC的解析式为:,依题意,得:
,
解得,
直线BC的解析式为:,
当时,,
点E的坐标为,
∵点M在第一象限内,且在BC的上方,
,
,
.
∵,
,
解得.
【点睛】此题考查了求抛物线的解析式、等腰三角形的存在性问题,三角形的面积,掌握待定系数法求抛物线的解析式,等腰三角形与函数的特征,三角形面积与函数的做法是解题的关键.
5.(12分) (2022内蒙古包头)如图,在平面直角坐标系中,抛物线与x轴交于A,B两点,点B的坐标是,顶点C的坐标是,M是抛物线上一动点,且位于第一象限,直线与y轴交于点G.
(1)求该抛物线的解析式;
(2)如图1,N是抛物线上一点,且位于第二象限,连接,记的面积分别为.当,且直线时,求证:点N与点M关于y轴对称;
(3)如图2,直线与y轴交于点H,是否存在点M,使得.若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1) (2)见解析 (3)存在,
【解析】【分析】(1)利用待定系数法求解抛物线的解析式即可;
(2)如图.过点M作轴,垂足为D.当与都以为底时,可得.再求解,,直线的解析式为.直线的解析式为,可得 .从而可得答案;
(3)过点M作轴,垂足为E.设,则.由, 可得.同理可得.再利用,建立方程方程即可.
【小问1详解】
解:∵抛物线与x轴交于点,顶点为,
∴解得
∴该抛物线的解析式为.
【小问2详解】
证明:如图.过点M作轴,垂足为D.
当与都以为底时,
∵,∴.
当时,则,
解得.
∵,∴,
∴.设点M的坐标为,
∵点M在第一象限,∴,
∴,∴.
设直线的解析式为,
∴解得
∴直线的解析式为.
设直线的解析式为,
∵直线,∴,
∴,∵,∴.
∴直线的解析式为,将其代入中,
得,∴,解得.
∵点N在第二象限,∴点N的横坐标为,
∴,∴.
∵,
∴点N与点M关于y轴对称.
【小问3详解】
如图.
存在点M,使得.理由如下:
过点M作轴,垂足为E.
∵,
∴.
∵,∴,∴.
在和中,
∵,∴,
∴.
∵,∴,
在和中,∵,
∴,
∴.
∵,
∴,
∴.
当时,,
∴.
∴存在点,使得.
【点睛】本题考查的是利用待定系数法求解抛物线的解析式,一次函数的解析式,二次函数的性质,二次函数与一次函数的交点坐标问题,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.
6. (12分)(2022济南)抛物线与x轴交于,两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.
(1)求抛物线的表达式和t,k的值;
(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求的最大值.
【答案】(1),,t=3, (2)点 (3)
【解析】【分析】(1)分别把代入抛物线解析式和一次函数的解析式,即可求解;
(2)作轴于点,根据题意可得,从而得到,,再根据,可求出m,即可求解;
(3)作轴交于点,过点作轴于点,则,再根据,可得,,然后根据,可得,从而得到,在根据二次函数的性质,即可求解.
【小问1详解】
解:∵在抛物线上,
∴,
∴,
∴抛物线解析式为,
当时,,
∴,(舍),
∴.
∵在直线上,
∴,
∴,
∴一次函数解析式为.
【小问2详解】
解:如图,作轴于点,
对于,令x=0,则y=-6,
∴点C(0,-6),即OC=6,
∵A(3,0),
∴OA=3,
∵点P的横坐标为m.
∴,
∴,,
∵∠CAP=90°,
∴,
∵,∴,
∵∠AOC=∠AMP=90°,∴,
∴,
∴,即,
∴(舍),,
∴,∴点.
【小问3详解】
解:如图,作轴交于点,过点作轴于点,
∵,
∴点,
∴,
∵PN⊥x轴,
∴PN∥y轴,
∴∠PNQ=∠OCB,
∵∠PQN=∠BOC=90°,
∴,
∴,
∵,,
∴,
∴,,
∵EN⊥y轴,
∴EN∥x轴,
∴,
∴,即
∴,
∴,
∴,
∴当时,的最大值是.
【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键,是中考的压轴题.
【中考一轮复习】2023年中考数学人教版单元检测卷——专题29 投影与视图(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题29 投影与视图(原卷版+解析版),共1页。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。