搜索
    上传资料 赚现金
    英语朗读宝

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版).doc
    • 解析
      【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(解析版).doc
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版)第1页
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版)第2页
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版)第3页
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(解析版)第1页
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(解析版)第2页
    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(解析版)第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版)

    展开

    这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题23 旋转(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题23旋转解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题23旋转原卷版doc等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
    (试卷满分120分,答题时间120分钟)
    一、选择题(共10小题,每题3分,共30分)
    1. (2022济南)下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    2. (2022广西河池)如图,在Rt△ABC中,,,,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
    A. 25π+24B. 5π+24C. 25πD. 5π
    3. (2022山东青岛)北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    4. (2022内蒙古呼和浩特)如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,、交于点.若,则的度数是(用含的代数式表示)( )
    A. B. C. D.
    5.(2022四川眉山)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:
    ①;②;③;④.其中正确结论的个数为( )
    A. 1个B. 2个C. 3个D. 4个
    6. (2022湖南常德)如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是( )
    A. B. ,
    C. D.
    7. 如(2022天津)图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
    A. B. C. D.
    8. (2022山东滨州)正方形的对角线相交于点O(如图1),如果绕点O按顺时针方向旋转,其两边分别与边相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是( )
    A. 线段 B. 圆弧 C. 折线 D. 波浪线
    9. (2022四川遂宁)下面图形中既是轴对称图形又是中心对称图形的是( )

    A.科克曲线 B.笛卡尔心形线 C.阿基米德螺旋线 D.赵爽弦图
    10.(2022四川自贡)如图,菱形对角线交点与坐标原点重合,点,则点的坐标为( )
    A. B. C. D.
    二、填空题(共10小题,每空3分,共30分)
    1. (2022贵州六盘水)如图,将绕点旋转得到,若,,,则__________.
    2.(2022青海西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=________.
    3. (2022浙江丽水)一副三角板按图1放置,O是边的中点,.如图2,将绕点O顺时针旋转,与相交于点G,则的长是___________.
    4.(2022广西贺州)如图,在平面直角坐标系中,为等腰三角形,,点B到x轴的距离为4,若将绕点O逆时针旋转,得到,则点的坐标为__________.
    5. (2022山东日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.
    6. (2022河南) 如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
    7. (2022新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将绕点D顺时针旋转与恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若,则______.
    8. (2022吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角后能够与它本身重合,则角可以为__________度.(写出一个即可)
    9.(2022辽宁盘锦)如图,在中,,点D为的中点,将绕点D逆时针旋转得到,当点A的对应点落在边上时,点在的延长线上,连接,若,则的面积是____________.
    10. (2022山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形绕原点O逆时针旋转,再沿y轴方向向上平移1个单位长度,则点的坐标为___________.
    三、解答题(本大题有6道小题,共60分)
    1. (6分)(2022安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
    (1)将△ABC向上平移6个单位,再向右平移2个单位,得到,请画出﹔
    (2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到,请画出.
    2. (8分)(2022武汉)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
    (1)在图(1)中,,分别是边,与网格线的交点.先将点绕点旋转得到点,画出点,再在上画点,使;
    (2)在图(2)中,是边上一点,.先将绕点逆时针旋转,得到线段,画出线段,再画点,使,两点关于直线对称.
    3.(10分) (2022湖南湘潭)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.将绕原点顺时针旋转后得到.
    (1)请写出、、三点的坐标:_________,_________,_________
    (2)求点旋转到点的弧长.
    4. (12分)(2022重庆)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.
    (1)如图1,若,且,,求的度数;
    (2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;
    (3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.
    5. (12分)(2022辽宁沈阳)(1)如图,和是等腰直角三角形,,点C在OA上,点D在线段BO延长线上,连接AD,BC.线段AD与BC的数量关系为______;
    (2)如图2,将图1中的绕点O顺时针旋转()第一问的结论是否仍然成立;如果成立,证明你的结论,若不成立,说明理由.
    (3)如图,若,点C线段AB外一动点,,连接BC,
    ①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值______;
    ②若以BC为斜边作,(B、C、D三点按顺时针排列),,连接AD,当时,直接写出AD的值.
    6.(12分)(2022山西)综合与实践
    问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
    (1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
    问题解决:
    (2)如图②,在三角板旋转过程中,当时,求线段CN的长;
    (3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.

    相关试卷

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版):

    这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版):

    这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    【中考一轮复习】2023年中考数学人教版单元检测卷——专题17 勾股定理(原卷版+解析版):

    这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题17 勾股定理(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题17勾股定理解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题17勾股定理原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map