所属成套资源:2023年中考数学复习专项专练专题
2023年中考数学复习专项专练专题01 实数及答案(四川版)
展开
这是一份2023年中考数学复习专项专练专题01 实数及答案(四川版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题01 实数 一、单选题1.(2021·四川凉山)的平方根是( )A.±3 B.3 C.±9 D.9【答案】A【解析】【分析】先求出的值,再求平方根即可.【详解】解:∵,9的平方根是±3,∴的平方根是±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.2.(2021·四川绵阳)下列数中,在与之间的是( )A.3 B.4 C.5 D.6【答案】C【解析】【分析】根据,,,,,即可得出结果.【详解】,,,又,,,,故选:C.【点睛】本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.3.(2020·四川巴中)定义运算:若am=b,则logab=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=( )A.﹣1 B.2 C.1 D.44【答案】A【解析】【分析】先根据乘方确定53=125,34=81,根据新定义求出log5125=3,log381=4,再计算出所求式子的值即可.【详解】解:∵53=125,34=81,∴log5125=3,log381=4,∴log5125﹣log381,=3﹣4,=﹣1,故选:A.【点睛】本题考查新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,掌握新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,解题关键理解新定义就是乘方的逆运算.二、填空题4.(2020·四川遂宁)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有_____个.【答案】3【解析】【分析】根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点睛】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.5.(2022·四川广安)若(a﹣3)2+=0,则以a、b为边长的等腰三角形的周长为________.【答案】11或13##13或11【解析】【分析】根据平方的非负性,算术平方根的非负性求得的值,进而根据等腰三角形的定义,分类讨论,根据构成三角形的条件取舍即可求解.【详解】解:∵(a﹣3)2+=0,∴,,当为腰时,周长为:,当为腰时,三角形的周长为,故答案为:11或13.【点睛】本题考查了等腰三角形的定义,非负数的性质,掌握以上知识是解题的关键.6.(2022·四川内江)对于非零实数a,b,规定a⊕b=,若(2x﹣1)⊕2=1,则x的值为 _____.【答案】【解析】【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:=1,等式两边同时乘以得,,解得:,经检验,x=是原方程的根,∴x=,故答案为:.【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.7.(2022·四川达州)人们把这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设,,记,,…,,则_______.【答案】5050【解析】【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,•••,利用规律求解即可.【详解】解:,,,,,…,故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得,找出的规律是本题的关键.三、解答题8.(2022·四川宜宾)计算:(1);(2).【答案】(1)(2)【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.(1)解:原式;(2)解:原式.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.9.(2021·四川巴中)(1)计算:2sin60°+|2|﹣()﹣1;(2)解不等式组,并把解集在数轴上表示出来;(3)先化简,再求值:(1),请从﹣4,﹣3,0,1中选一个合适的数作为a的值代入求值.【答案】(1)(2)−3<x≤−1;数轴见解析(3);当a=1时,原式=5【解析】【分析】(1)根据特殊角的三角函数值、去绝对值的方法、负整数指数幂、二次根式的除法可以解答本题;(2)先求出每个不等式的解集,然后取其公共部分,即可得到不等式组的解集,然后再在数轴上表示出来即可;(3)根据分式的除法和加法可以化简题目中的式子,然后从−4,−3,0,1中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】解:(1)2sin60°+|2|﹣()-1=;(2),解不等式①,得x>−3,解不等式②,得x≤−1,∴原不等式组的解集是−3<x≤−1,解集在数轴上表示如下:;(3)(1)===,∵a(a+3)≠0,a+4≠0,∴a≠−4,−3,0,∴a=1,当a=1时,原式==5.【点睛】本题考查特殊角的三角函数值、去绝对值的方法、负整数指数幂、二次根式的除法、解一元一次不等式组、分式的化简求值,解答本题的关键是明确它们各自的计算方法,认真计算,注意要检查.10.(2020·四川内江)我们知道,任意一个正整数x都可以进行这样的分解:(m,n是正整数,且),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称是x的最佳分解.并规定:.例如:18可以分解成,或,因为,所以是18的最佳分解,所以.(1)填空:;;(2)一个两位正整数t(,,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求的最大值;(3)填空:①;②;③;④.【答案】(1);1;(2)t为39,28,17;的最大值;(3)【解析】【分析】(1)6=1×6=2×3,由已知可求=;9=1×9=3×3,由已知可求=1; (2)由题意可得:交换后的数减去交换前的数的差为:10b+a−10a−b=9(b−a)=54,得到b−a=6,可求t的值,故可得到的最大值;(3)根据的定义即可依次求解.【详解】(1)6=1×6=2×3,∵6−1>3−2,∴=;9=1×9=3×3,∵9−1>3−3,∴=1,故答案为:;1;(2)由题意可得:交换后的数减去交换前的数的差为:10b+a−10a−b=9(b−a)=54,∴b−a=6,∵1≤a≤b≤9,∴b=9,a=3或b=8,a=2或b=7,a=1,∴t为39,28,17;∵39=1×39=3×13,∴=;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵=20×21∴;②=28×30∴;③∵=40×42∴;④∵=56×60∴,故答案为:.【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.
相关试卷
这是一份2023年中考数学复习专项专练专题20 概率及答案(四川版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学复习专项专练专题19 统计及答案(四川版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学复习专项专练专题12 三角形及答案(四川版),共7页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。