所属成套资源:2023年中考数学复习专项专练专题
2023年中考数学复习专项专练专题18 投影与视图、命题与证明、尺规作图及答案(四川版)
展开
这是一份2023年中考数学复习专项专练专题18 投影与视图、命题与证明、尺规作图及答案(四川版),共8页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
专题18 投影与视图、命题与证明、尺规作图 一、单选题1.(2021·四川德阳)图中几何体的三视图是( )A. B.C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱用实线表示,看不到的棱用虚线的表示.【详解】解:该几何体的三视图如下:故选:A.【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.2.(2020·四川巴中)已知一个几何体由大小相等的若干个小正方体组成,其三视图如图所示,则组成该几何体的小正方体个数为( ) A.6 B.7 C.8 D.9【答案】A【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:根据俯视图可知该组合体共3行、2列,结合主视图和左视图知该几何体中小正方体的分布情况如图所示:则组成此几何体需要正方体个数为6.故选:A.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.的关键.3.(2022·四川达州)下列命题是真命题的是( )A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若,则D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是【答案】D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.4.(2021·四川达州)以下命题是假命题的是( )A.的算术平方根是2B.有两边相等的三角形是等腰三角形C.一组数据:3,,1,1,2,4的中位数是1.5D.过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据所学知识对命题进行判断,得出真假即可.【详解】解:A,的算数平方根是,命题为假命题,符合题意;B,有两边相等的三角形是等腰三角形,命题为真命题,不符合题意;C,一组数据:3,,1,1,2,4的中位数是,命题为真命题,不符合题意;D,过直线外一点有且只有一条直线与已知直线平行,命题为真命题,不符合题意,故选:A.【点睛】本题考查了命题的真假,解题的关键是:要结合所学知识对选项逐一判断,需要对基本知识5.(2020·四川)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A.20π B.18π C.16π D.14π【答案】B【解析】【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,且底面半径为,∴这个几何体的表面积=底面圆的面积+圆柱的侧面积+圆锥的侧面积=22π+222π+32π=18π,故选:B.【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.二、解答题6.(2020·四川攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为.王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少?【答案】(1)120cm;(2)正确;(3)280cm【解析】【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG⊥CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH⊥AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【详解】解:(1)设王诗嬑的影长为xcm,由题意可得:,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,∴高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG⊥CE于点G,由题意可得:BC=100,CF=100,∵斜坡坡度,∴,∴设FG=4m,CG=3m,在△CFG中,,解得:m=20,∴CG=60,FG=80,∴BG=BC+CG=160,过点F作FH⊥AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FG⊥BE,AB⊥BE,FH⊥AB,可知四边形HBGF为矩形,∴,∴AH==200,∴AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.7.(2020·四川达州)如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断与交点的个数,并说明理由.【答案】(1)见解析;(2)与有1个交点,理由见解析【解析】【分析】(1)根据已知圆心和半径作圆、作已知角的平分线、过直线外一点作已知直线的垂线的尺规作图的步骤作图即可;(2)连接OD,由OB=OD,得到∠1=∠2,再由角平分线得出∠1=∠3,等量代换进而证出OD∥BA,根据两直线平行同旁内角互补,得到∠ODE=90°,由此得出OD是的切线,即与有1个交点.【详解】解:(1)如下图,补全图形:(2)如下图,连接OD,∵点D在上,∴OB=OD,∴∠1=∠2,又∵BM平分,∴∠1=∠3,∴∠2=∠3,∴OD∥BA,∴∠ODE+∠BED=180°,∵∴∠ODE=90°,∴ED是的切线,∴与有1个交点.【点睛】本题考查尺规作图、圆的切线的判定,熟练掌握尺规作图的步骤及圆的切线的判定定理是解题的关键.
相关试卷
这是一份2023年中考数学专项复习测试卷——投影与视图、命题与证明、尺规作图,共6页。
这是一份2023年中考数学专题复习加强练习之投影与视图、命题与证明、尺规作图附答案,共8页。试卷主要包含了如图,在中,按以下步骤作图,已知等内容,欢迎下载使用。
这是一份2023年中考数学专题复习投影与视图、命题与证明、尺规作图练习附答案,共9页。