资料中包含下列文件,点击文件名可预览资料内容
还剩11页未读,
继续阅读
所属成套资源:北京课改版数学九年级下册PPT课件(送教案)整册
成套系列资料,整套一键下载
- 24.2 基本几何体的三视图 课件 课件 1 次下载
- 24.3 基本几何体的展开图 课件 课件 2 次下载
- 25.1概率的求法与应用 课件(2) 课件 1 次下载
- 25.2概率的求法与应用 课件 课件 1 次下载
- 26.1综合运用数学知识解决实际问题 教案 课件 1 次下载
25.1概率的求法与应用 课件
展开
这是一份25.1概率的求法与应用 课件
25章 概率的求法与应用www.xsjjyw.com 版权所有25.1 用列举法求概率(1)复习引入 必然事件;在一定条件下必然发生的事件,不可能事件;在一定条件下不可能发生的事件随机事件;在一定条件下可能发生也可能不发生的事件,2.概率的定义事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A). 0≤P(A) ≤1.必然事件的概率是1,不可能事件的概率是0.www.xsjjyw.com 版权所有等可能性事件问题1.掷一枚硬币,朝上的面有 种可能。问题2.抛掷一个骰子,它落地时向上的数 有 种可能。问题3.从标有1,2,3,4,5号的纸签中随意地抽取一根,抽出的签上的号码有 种可能。265以上三个试验有两个共同的特点:1。 一次试验中,可能出现的结果有限多个。2。一次试验中,各种结果发生的可能性相等。问题1:P(反面朝上)= P(点数为2)=问题2:等可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法.www.xsjjyw.com 版权所有古典概型的特点1.可能出现的结果只有有限多个;2.各种结果出现的可能性相等;可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法.www.xsjjyw.com 版权所有古典概型的概率:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为事件A发生的可能种数试验的总共可能种数www.xsjjyw.com 版权所有例:下列事件哪些是等可能性事件?哪些不是?抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。某运动员射击一次中靶心或不中靶心。从分别写有1,3,5,7中的一个数的四张卡片中任抽一张结果是1,或3或5或7。不是不是是www.xsjjyw.com 版权所有列举法求概率—枚举法在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,分析出随机事件发生的概率。所谓枚举法,就是把事件发生的所有可能的结果一一列举出来,计算概率的一种数学方法。www.xsjjyw.com 版权所有例4:掷两枚硬币,求下列事件的概率:(1)两枚硬币正面全部朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。所有的结果共有4个,并且这四个结果出现的可能性相等。www.xsjjyw.com 版权所有(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A)的结果只有一个,即“正正”所以P(A)=(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”所以P(B)=(2)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C)的结果共有2个,即“正反”“反正”所以P(C)= =www.xsjjyw.com 版权所有例4.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:AB总共4种结果,每种结果出现的可能性相同.(1)所有结果中,满足两枚硬币全部正面朝上的结果只有一个,即”(正,正)”,所以P(两枚硬币全部正面朝)=www.xsjjyw.com 版权所有例4.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:AB总共4种结果,每种结果出现的可能性相同.(2)所有结果中,满足两枚硬币全部反面朝上的结果只有一个,即”(反,反)”,所以P(两枚硬币全部反面朝)=(3)所有结果中,满足一枚硬币正面朝上, 一枚硬币反面朝上的结果有2个,即”(正,反),(反,正)”,所以P(一枚硬币正面朝上,一枚硬币反面朝上)=如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.思考2:www.xsjjyw.com 版权所有解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)例、同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子点数之和是9(3)至少有一个骰子的点数为2问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?分析:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用 。把两个骰子分别标记为第1个和第2个,列表如下:列表法www.xsjjyw.com 版权所有解:由表可看出,同时投掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子点数相同(记为事件A)的结果有6个(2)满足两个骰子点数和为9(记为事件B)的结果有4个(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。www.xsjjyw.com 版权所有想一想: 如果把刚刚这个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?没有变化BYE BYE
25章 概率的求法与应用www.xsjjyw.com 版权所有25.1 用列举法求概率(1)复习引入 必然事件;在一定条件下必然发生的事件,不可能事件;在一定条件下不可能发生的事件随机事件;在一定条件下可能发生也可能不发生的事件,2.概率的定义事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A). 0≤P(A) ≤1.必然事件的概率是1,不可能事件的概率是0.www.xsjjyw.com 版权所有等可能性事件问题1.掷一枚硬币,朝上的面有 种可能。问题2.抛掷一个骰子,它落地时向上的数 有 种可能。问题3.从标有1,2,3,4,5号的纸签中随意地抽取一根,抽出的签上的号码有 种可能。265以上三个试验有两个共同的特点:1。 一次试验中,可能出现的结果有限多个。2。一次试验中,各种结果发生的可能性相等。问题1:P(反面朝上)= P(点数为2)=问题2:等可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法.www.xsjjyw.com 版权所有古典概型的特点1.可能出现的结果只有有限多个;2.各种结果出现的可能性相等;可能性事件的概率可以用列举法而求得。列举法就是把要数的对象一一列举出来分析求解的方法.www.xsjjyw.com 版权所有古典概型的概率:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为事件A发生的可能种数试验的总共可能种数www.xsjjyw.com 版权所有例:下列事件哪些是等可能性事件?哪些不是?抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。某运动员射击一次中靶心或不中靶心。从分别写有1,3,5,7中的一个数的四张卡片中任抽一张结果是1,或3或5或7。不是不是是www.xsjjyw.com 版权所有列举法求概率—枚举法在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,分析出随机事件发生的概率。所谓枚举法,就是把事件发生的所有可能的结果一一列举出来,计算概率的一种数学方法。www.xsjjyw.com 版权所有例4:掷两枚硬币,求下列事件的概率:(1)两枚硬币正面全部朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。所有的结果共有4个,并且这四个结果出现的可能性相等。www.xsjjyw.com 版权所有(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A)的结果只有一个,即“正正”所以P(A)=(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”所以P(B)=(2)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C)的结果共有2个,即“正反”“反正”所以P(C)= =www.xsjjyw.com 版权所有例4.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:AB总共4种结果,每种结果出现的可能性相同.(1)所有结果中,满足两枚硬币全部正面朝上的结果只有一个,即”(正,正)”,所以P(两枚硬币全部正面朝)=www.xsjjyw.com 版权所有例4.掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:AB总共4种结果,每种结果出现的可能性相同.(2)所有结果中,满足两枚硬币全部反面朝上的结果只有一个,即”(反,反)”,所以P(两枚硬币全部反面朝)=(3)所有结果中,满足一枚硬币正面朝上, 一枚硬币反面朝上的结果有2个,即”(正,反),(反,正)”,所以P(一枚硬币正面朝上,一枚硬币反面朝上)=如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.思考2:www.xsjjyw.com 版权所有解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)例、同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子点数之和是9(3)至少有一个骰子的点数为2问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?分析:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用 。把两个骰子分别标记为第1个和第2个,列表如下:列表法www.xsjjyw.com 版权所有解:由表可看出,同时投掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子点数相同(记为事件A)的结果有6个(2)满足两个骰子点数和为9(记为事件B)的结果有4个(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。www.xsjjyw.com 版权所有想一想: 如果把刚刚这个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?没有变化BYE BYE
相关资料
更多