终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件+教案

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件.ppt
    • 教案
      1.5 二次函数的应用 第1课时 二次函数的应用(1) 教案.doc
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第1页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第2页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第3页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第4页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第5页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 课件第6页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 教案第1页
    1.5 二次函数的应用 第1课时 二次函数的应用(1) 教案第2页
    还剩7页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版九年级下册1.5 二次函数的应用一等奖ppt课件

    展开

    这是一份湘教版九年级下册1.5 二次函数的应用一等奖ppt课件,文件包含15二次函数的应用第1课时二次函数的应用1课件ppt、15二次函数的应用第1课时二次函数的应用1教案doc等2份课件配套教学资源,其中PPT共13页, 欢迎下载使用。
    1.5 二次函数的应用第1课时 二次函数的应用(1)【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.【教学重点】用抛物线的知识解决拱桥类问题.【教学难点】将实际问题转化为抛物线的知识来解决.一、情境导入,初步认识预习P29页的内容,完成下面各题.1.要求出教材P29动脑筋中拱顶离水面的高度变化情况,你准备采取什么办法?2.根据教材P29图1-18,你猜测是什么样的函数呢?3.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!4.根据图象你能求出函数的解析式吗?试一试!二、思考探究,获取新知探究  直观图象的建模应用例1 某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一盏壁灯,两壁灯之间的水平距离是6m,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1m)约为(      A.6.9m      B.7.0m      C.7.1m      D.6.8m【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题.先建立平面直角坐标系,如图,设大门地面宽度为AB,两壁灯之间的水平距离为CD,则B,D坐标分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.把(3,3),(4,0)代入解析式求得h6.9.故选A.答案:A【教学说明】根据直观图象建立恰当的直角坐标系和解析式.例2  小红家门前有一座抛物线形拱桥,如图,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加多少?【分析】拱桥类问题一般是转化为二次函数的知识来解决.解:由题意建立如图的直角坐标系,设抛物线的解析式y=ax2,抛物线经过点A(2,-2),-2=4a,a=-,即抛物线的解析式为y=-x2,当水面下降1m时,点B的纵坐标为-3.将y=-3代入二次函数解析式,得y=-x2,得-3=-x2x2=6x=±,此时水面宽度为2|x|=2m.即水面下降1m时,水面宽度增加了(2-4)m.【教学说明】用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.三、运用新知,深化理解1.某溶洞是抛物线形,它的截面如图所示.现测得水面宽AB=1.6m,溶洞顶点O到水面的距离为2.4m,在图中直角坐标系内,溶洞所在抛物线的函数关系式是(      A.y= x2B.y=x2+C.y=-x2D.y=-x2+2.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为(      A.50m    B.100m    C.160m    D.200m      第2题图                 第3题图3.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需        秒.4.(浙江金华中考)如图,足球场上守门员在O处踢出一高球,球从离地面1米处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员是多少米?(取47,25)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?【教学说明】学生自觉完成上述习题,加深对新知的理解,并适当加以分析,提示如第4题,由图象的类型及已知条件,设其解析式为y=a(x-6)2+4,过点A(0,1),可求出a;(2)令y=0可求出x的值,x<0舍去;(3)令y=0,求出C点坐标(6+4,0),设抛物线CND为y=-(x-k)2+2,代入C点坐标可求出k值(k>6+4).再令y=0可求出C、D的坐标,进而求出BD.【答案】1.C  2.C  3.36  4.解:(1)y=-(x-6)2+4(2)令y=0,可求C点到守门员约13米.(3)向前约跑17米.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评.3.建立二次实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数解析式.(4)利用待定系数法求出函数解析式.(5)根据求得的解析式进一步分析,判断并进行有关的计算.1.教材P31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是利用二次函数解决生活中的实际问题,其主要思路是建立适当的直角坐标系,使求出的二次函数模型更简捷,解决问题更方便,让学生学会运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣. 

    相关课件

    湘教版九年级下册1.5 二次函数的应用精品课件ppt:

    这是一份湘教版九年级下册1.5 二次函数的应用精品课件ppt,文件包含15二次函数的应用第2课时二次函数的应用2课件ppt、15二次函数的应用第2课时二次函数的应用2教案doc等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。

    初中数学青岛版九年级下册5.7二次函数的应用完整版课件ppt:

    这是一份初中数学青岛版九年级下册5.7二次函数的应用完整版课件ppt,文件包含57二次函数的应用第1课时课件pptx、57二次函数的应用教案docx等2份课件配套教学资源,其中PPT共9页, 欢迎下载使用。

    冀教版九年级下册30.4 二次函数的应用公开课ppt课件:

    这是一份冀教版九年级下册30.4 二次函数的应用公开课ppt课件,文件包含河北教育版数学九年级下·304二次函数的应用第1课时教学课件pptx、3041抛物线形问题教案docx、3041抛物线形问题同步练习docx等3份课件配套教学资源,其中PPT共15页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map