- 专题01 线段双中点模型(解析版) 试卷 5 次下载
- 专题02 双角平分线模型(解析版) 试卷 3 次下载
- 专题05 A字型、8字模型、飞镖模型(解析版) 试卷 1 次下载
- 专题06 老鹰抓小鸡模型与双角平分线模型(三角形)(解析版) 试卷 1 次下载
- 专题07 一线三垂直与一线三等角(解析版) 试卷 5 次下载
专题04 翘脚模型(解析版)
展开专题04 翘脚模型
一、基础知识回顾
1)平行线的性质:
性质1:两直线平行,同位角相等;
几何符号语言:∵AB∥CD ∴∠3=∠2(两直线平行,同位角相等)
性质2:两直线平行,内错角相等;
几何符号语言:∵AB∥CD ∴∠1=∠2(两直线平行,内错角相等)
性质3:两直线平行,同旁内角互补.。
几何符号语言:∵AB∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)
2)三角形内角和定理:三角形三个内角和等于180°
三角形外角性质:三角形的一个外角等于与它不相邻的两个内角之和。
二、模型的概述:
模型一:已知AB∥CD,则∠1,∠2,∠3之间的关系为: ∠1=∠2+∠3
证明:
1)延长AB,交DE边于点O(图1)
2)延长BE,交CD边于点O(图2)
3)过点E作OP∥AB(图3)
模型二:已知AB∥CD,则∠1,∠2,∠3之间的关系为: ∠1+∠3-∠2=180°
证明:
1)延长AB,与CE边相交于点O(图1)
2)过点E作OP∥AB(图2)
【基础过关练】
1.如图,如果AB∥EF,EF∥CD,则∠1,∠2,∠3的关系式__________.
【答案】∠2+∠3﹣∠1=180°
【分析】根据平行线的性质和平角定义求解即可.
【详解】解:∵AB∥EF,EF∥CD,
∴∠2+∠BOE=180°,∠3+∠COF=180°,
∴∠2+∠3+∠BOE+∠COF=360°,
∵∠BOE+∠COF+∠1=180°,
∴∠BOE+∠COF=180°﹣∠1,
∴∠2+∠3+(180°﹣∠1)=360°,
即∠2+∠3﹣∠1=180°.
故答案为:∠2+∠3﹣∠1=180°.
【点睛】本题考查平行线的性质、平角定义,熟练掌握平行线的性质是解答的关键.
2.如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为__________.
【答案】57°
【分析】根据三角形内角和180°以及平行线的性质:1、如果两直线平行,那么它们的同位角相等;2、如果两直线平行,那么它们的同旁内角互补;3、如果两直线平行,那么它们的内错角相等,据此计算即可.
【详解】解:设AE、CD交于点F,
∵∠E=37°,∠C= 20°,
∴∠CFE=180°-37°-20°=123°,
∴∠AFD=123°,
∵AB∥CD,
∴∠AFD+∠EAB=180°,
∴∠EAB=180°-123°=57°,
故答案为:57°.
【点睛】本题主要考查三角形内角和定理以及平行线的性质,熟知平行的性质是解题的关键.
3.如图,已知∠ABC=80°,∠CDE=140°,则∠BCD=_____.
【答案】
【分析】延长交BC于M,根据两直线平行,内错角相等证明∠BMD=∠ABC,再求解,再利用三角形的外角的性质可得答案.
【详解】解:延长交BC于M,
∵
∴∠BMD=∠ABC=80°,
∴;
又∵∠CDE=∠CMD+∠C,
∴.
故答案是:40°
【点睛】本题考查了平行线的性质.三角形的外角的性质,邻补角的定义,掌握以上知识是解题的关键.
4.如图,,于点.若,则的度数为_______.
【答案】
【分析】是的外交,通过平行和平角的关系求出,即可求解的度数.
【详解】解:如图所示,
∵,,
∴,
∵,
∴,
∵是的外角,且,即,
∴,
故答案为:.
【点睛】本题主要考查平行线的性质,三角形外交的性质,掌握平行线的性质,三角形的外交等于与它不相邻的两个内角的和是解题的关键.
5.如图,直线,直线AB交,于D,B两点,交直线于点C.若,则__________.
【答案】110°##110度
【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.
【详解】解:如图所示:
∵AC⊥AB,
∴∠A=90°,
∵∠1=20°,
∴∠ADC=180°-90°-20°=70°,
∵,
∴∠3=∠ADC=70°,
∴∠2=180°-70°=110°,
故答案为:110°.
【点睛】此题主要考查了平行线的性质,三角形内角定理,垂直的定义,关键是掌握两直线平行,同位角相等.
6.如图,直线,是直线上一点,是直线外一点,若,,则的度数为________.
【答案】##120度
【分析】直接利用平行线的性质并结合三角形内角和定理即可得出答案.
【详解】解:延长交于点,
∵,,,
∴,
∵,
∴
,
∴,
∴的度数为.
故答案为:.
【点睛】本题考查平行线的性质,三角形的内角和定理,求一个角的补角等知识.正确理解和运用平行线的性质是解题的关键.
7.如图,已知,∠A=40°,∠C=65°,则∠P的度数为 _____.
【答案】25°##25度
【分析】根据平行线的性质得出∠PEB=∠C,利用三角形外角的性质,求出∠P的度数即可.
【详解】解:∵,
∴,
∵,
∴.
故答案为:25°.
【点睛】本题主要考查了平行线的性质和三角形外角的性质,熟练掌握两直线平行同位角相等,是解题的关键.
8.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知,,,则的度数是________度.
【答案】20
【分析】延长DC交AE于点F,根据平行线的性质求出∠BAE=∠DFE=,利用外角的性质求出∠E=∠DCE-∠DFE=-=即可.
【详解】延长DC交AE于点F,
∵ABDC,
∴∠BAE=∠DFE=,
∵∠DCE=,
∴∠E=∠DCE-∠DFE=-=,
故答案为20.
【点睛】此题考查了平行线的性质:两直线平行同位角相等,以及三角形外角的性质,熟记平行线的性质是解题的关键.
9.如图,若,则∠1+∠3-∠2的度数为______
【答案】180°
【分析】延长EA交CD于点F,则有∠2+∠EFC=∠3,然后根据可得∠1=∠EFD,最后根据领补角及等量代换可求解.
【详解】解:延长EA交CD于点F,如图所示:
,
∠1=∠EFD,
∠2+∠EFC=∠3,
,
,
;
故答案为180°.
【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.
【提高测试】
1.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线 EF,点在直线上,则.以上结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】①过点E作直线EFAB,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;
②如图2,先根据三角形外角的性质得出∠1=∠C+∠P,再根据两直线平行,内错角相等即可作出判断;
③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;
④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.
【详解】解:
①如图1,过点E作直线EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠B+∠AEC=360°,
故①错误;
②如图2,∵∠1是△CEP的外角,
∴∠1=∠C+∠P,
∵AB∥CD,
∴∠A=∠1,
即∠P=∠A﹣∠C,
故②正确;
③如图3,过点E作直线EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A+∠3=180°,∠1=∠2,
∴∠A+∠AEC﹣∠1=180°,
即∠AEC=180°+∠1﹣∠A,
故③错误;
④如图4,∵AB∥EF,
∴∠α=∠BOF,
∵CD∥EF,
∴∠γ+∠COF=180°,
∵∠BOF=∠COF+∠β,
∴∠COF=∠α﹣∠β,
∴∠γ+∠α﹣∠β=180°,
故④正确;
综上结论正确的个数为2,
故选:B.
【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.
2.①如图1,ABCD,则∠A+∠E+∠C=180°;②如图2,ABCD,则∠E=∠A+∠C;③如图3,ABCD,则∠A+∠E-∠1=180°;④如图4,ABCD,则∠A=∠C+∠P.以上结论正确的个数是( )
A.①②③④ B.①②③ C.②③④ D.①②④
【答案】C
【分析】①过点E作直线,由平行线的性质即可得出结论;
②过点E作直线,由平行线的性质即可得出结论;
③过点E作直线,由平行线的性质可得出∠A+∠E-∠1=180°;
④先过点P作直线,再根据两直线平行,内错角相等和同位角相等即可作出判断.
【详解】解:①过点E作直线,
∵,∴,∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠C+∠AEC=360°,故①错误;
②过点E作直线,
∵,
∴,∴∠A=∠1,∠2=∠C,
∴∠AEC=∠A+∠C,即∠AEC=∠A+∠C,故②正确;
③过点E作直线,
∵,∴,∴∠A+∠3=180°,∠1=∠2,
∴∠A+∠AEC-∠2=180°,即∠A+∠AEC-∠1=180°,故③正确;
④如图,过点P作直线,
∵,∴,
∴∠1=∠FPA,∠C=∠FPC,
∵∠FPA=∠FPC+∠CPA,
∴∠1=∠C+∠CPA,
∵AB∥CD,∴∠A=∠1,即∠A=∠C+∠CPA,故④正确.
综上所述,正确的小题有②③④.
故选:C.
【点睛】本题考查的是平行线的性质及平行公理的推论,根据题意作出辅助线是解答此题的关键.
3.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为
A.30° B.35° C.36° D.45°
【答案】C
【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.
【详解】解:如图延长BG交CD于G
∵BF∥ED
∴∠F=∠EDF
又∵DF 平分∠CDE,
∴∠CDE=2∠F,
∵BF∥ED
∴∠CGF=∠EDF=2∠F,
∵AB∥CD
∴∠ABF=∠CGF=2∠F,
∵BF平分∠ABE
∴∠ABE=2∠ABF=4∠F,
又∵∠F 与∠ABE 互补
∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°
故答案选C.
【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.
4.如图,则与的数量关系是( )
A. B.
C. D.
【答案】D
【分析】先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.
【详解】设
则
∵
∴
∴
故选:D.
【点睛】本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用.
5.如图,已知直线、被直线所截,,E是平面内任意一点(点E不在直线、、上),设,.下列各式:①,②,③,④,的度数可能是( )
A.②③ B.①④ C.①③④ D.①②③④
【答案】D
【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.
【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β-α.
(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
∴∠AE2C=α+β.
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β.
(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.
综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.
故选:D.
【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.
6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.
小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即
已知:如图1,,为、之间一点,连接, 得到.
求证:
小明笔记上写出的证明过程如下:
证明:过点作,
∴
∵,
∴
∴.
∵
∴
请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.
(1)如图,若,,则___________.
(2)如图,,平分,平分,,则___________.
【答案】 240° 51°
【分析】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;
(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.
【详解】(1)解:作EM∥AB,FN∥CD,如图,
AB∥CD,
∴AB∥EM∥FN∥CD,
∴∠B=∠1,∠2=∠3,∠4+∠C=180°,
∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF +180°,
∵,
∴∠B+∠CFE+∠C=60°+180°=240°;
(2)解:如图,分别过G、H作AB的平行线MN和RS,
∵平分,平分,
∴∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,
∴∠BHC=180°-∠RHB-∠SHC=180°-(∠ABG+∠DCG),
∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,
∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,
又∵∠BGC=∠BHC+27°,
∴180°-2∠BHC=∠BHC+27°,
∴∠BHC =51°.
故答案为:(1)240°;(2)51°.
【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
7.已知直线AB∥CD,P为平面内一点,连接PA、PD.
(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;
(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为 .
(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.
【答案】(1)∠APD=80°;(2)∠PAB+∠CDP-∠APD=180°;(3)∠AND=45°.
【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据平行线的性质,即可证得∠PAB+∠CDP-∠APD=180°;
(3)先证明∠NOD=∠PAB,∠ODN=∠PDC,利用(2)的结论即可求解.
【详解】解:(1)∵∠A=50°,∠D=150°,
过点P作PQ∥AB,
∴∠A=∠APQ=50°,
∵AB∥CD,
∴PQ∥CD,
∴∠D+∠DPQ=180°,则∠DPQ=180°-150°=30°,
∴∠APD=∠APQ+∠DPQ=50°+30°=80°;
(2)∠PAB+∠CDP-∠APD=180°,
如图,作PQ∥AB,
∴∠PAB=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠CDP+∠DPQ=180°,即∠DPQ=180°-∠CDP,
∵∠APD=∠APQ-∠DPQ,
∴∠APD=∠PAB-(180°-∠CDP)=∠PAB+∠CDP-180°;
∴∠PAB+∠CDP-∠APD=180°;
(3)设PD交AN于O,如图,
∵AP⊥PD,
∴∠APO=90°,
由题知∠PAN+∠PAB=∠APD,即∠PAN+∠PAB=90°,
又∵∠POA+∠PAN=180°-∠APO=90°,
∴∠POA=∠PAB,
∵∠POA=∠NOD,
∴∠NOD=∠PAB,
∵DN平分∠PDC,
∴∠ODN=∠PDC,
∴∠AND=180°-∠NOD-∠ODN=180°-(∠PAB+∠PDC),
由(2)得∠PAB+∠CDP-∠APD=180°,
∴∠PAB+∠PDC=180°+∠APD,
∴∠AND=180°-(∠PAB+∠PDC)
=180°-(180°+∠APD)
=180°-(180°+90°)
=45°,
即∠AND=45°.
【点睛】本题考查了平行线的性质以及角平分线的定义.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
8.(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;
(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.
(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.
【答案】(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.
【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;
(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;
(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.
【详解】解:(1)过E作EMAB,
∵ABCD,
∴CDEMAB,
∴∠ABE=∠BEM,∠DCE=∠CEM,
∵CF平分∠DCE,
∴∠DCE=2∠DCF,
∵∠DCF=30°,
∴∠DCE=60°,
∴∠CEM=60°,
又∵∠CEB=20°,
∴∠BEM=∠CEM﹣∠CEB=40°,
∴∠ABE=40°;
(2)过E作EMAB,过F作FNAB,
∵∠EBF=2∠ABF,
∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,
∵CF平分∠DCE,
∴设∠DCF=∠ECF=y,则∠DCE=2y,
∵ABCD,
∴EMABCD,
∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,
∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,
同理∠CFB=y﹣x,
∵2∠CFB+(180°﹣∠CEB)=190°,
∴2(y﹣x)+180°﹣(2y﹣3x)=190°,
∴x=10°,
∴∠ABE=3x=30°;
(3)过P作PLAB,
∵GM平分∠DGP,
∴设∠DGM=∠PGM=y,则∠DGP=2y,
∵PQ平分∠BPG,
∴设∠BPQ=∠GPQ=x,则∠BPG=2x,
∵PQGN,
∴∠PGN=∠GPQ=x,
∵ABCD,
∴PLABCD,
∴∠GPL=∠DGP=2y,
∠BPL=∠ABP=30°,
∵∠BPL=∠GPL﹣∠BPG,
∴30°=2y﹣2x,
∴y﹣x=15°,
∵∠MGN=∠PGM﹣∠PGN=y﹣x,
∴∠MGN=15°.
【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.
9.已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;
(2)当点P在线段EF外运动时有两种情况.
①如图2写出∠1,∠2,∠3之间的关系并给出证明;
②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).
【答案】(1)证明见详解
(2)①;证明见详解;②;证明见详解
【分析】(1)如图4过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;
(2)①如图5过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;
②如图6过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出.
(1)
解:如图4所示:过点作,
∵
∴
∴,,
∵,
∴;
(2)
解:①如图5过点作,
∵
∴
∴,,
∵,
∴;
②如图6过点作,
∵
∴
∴,,
∵,
∴.
【点睛】本题利用“猪蹄模型”及其变式考查了利用平行线的性质求角之间的数量关系,准确的作出辅助线和找到对应的内错角是解决本题的关键.
10.请你探究:如图(1),木杆与平行,木杆的两端、用一橡皮筋连接.
(1)在图(1)中,与有何关系?
(2)若将橡皮筋拉成图(2)的形状,则、、之间有何关系?
(3)若将橡皮筋拉成图(3)的形状,则、、之间有何关系?
(4)若将橡皮筋拉成图(4)的形状,则、、之间有何关系?
(5)若将橡皮筋拉成图(5)的形状,则、、之间有何关系?
(注:以上各问,只写出探究结果,不用说明理由)
【答案】(1)∠B+∠C=180º;(2)∠B+∠C=∠A;(3)∠A +∠B+∠C=360º;(4)∠A+∠B=∠C;(5)∠A+∠C =∠B
【分析】(1)利用平行线的性质“两直线平行,同旁内角相等”即可解答;
(2)过点A作AD∥BE,利用“两直线平行,内错角相等”即可得出结论;
(3)同样过点A作AD∥BE,利用“两直线平行,同旁内角互补”即可得出结论;
(4)利用“两直线平行,同位角相等”和三角形外角性质可得出结论;
(5)利用“两直线平行,同位角相等”和三角形外角性质可得出结论.
【详解】(1)如图(1)∵与平行,∴∠B+∠C=180º;
(2)如图(2),过点A作AD∥BE,则AD∥BE∥CF(平行于同一条直线的两条直线平行),
∴∠B=∠BAD,∠C=∠DAC,
∴∠B+∠C=∠BAD+∠DAC=∠BAC,
即∠B+∠C=∠A;
(3)如图(3),过点A作AD∥BE,则AD∥BE∥CF,
∴∠B+∠BAD=180º,∠DAC+∠C=180º,
∴∠B+∠BAD+∠DAC+∠C=360º,
即∠B+∠A+∠C=360º;
(4)如图(4),设BE与AC相交于D,
∵与平行,
∴∠C=∠ADE,
∵∠ADE=∠A+∠B,
∴∠A+∠B=∠C;
(5)如图(5),设CF与AB相交于D,
∵与平行,
∴∠B=∠ADF,
∵∠ADF=∠A+∠C,
∴∠A+∠C=∠B.
【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质,作辅助平行线是解答的关键.
11.如图,已知,求证:.
【答案】见解析.
【分析】作PQ∥BE,由平行线的性质和判定可求证BE∥FC,然后再由邻补角的定义、三角形外角的性质及平行线的性质可求证∠A+∠B+∠C+∠D=180°.
【详解】解:作PQ∥BE,如图所示:
∵BE∥PQ,
∴∠1=∠EOP,
∵∠3=∠1+∠2,∠3=∠EOP+∠POF,
∴∠2=∠POF,
∴PQ∥FC,
∴BE∥FC,
∴∠AME=∠FNA,
又∵∠AME=∠A+∠B,∠FND=∠C+∠D,∠FNA+∠FND=180°,
∴∠A+∠B+∠C+∠D=180°.
【点睛】本题主要考查了平行线的判定和性质、三角形的外角和定理、邻补角的定义等知识点,根据题意和所学知识证明BE∥FC是解题的关键.
12.如图所示,,,,求的度数.
【答案】.
【分析】根据平行线的性质,由靴子图ABEFC知,,,由靴子图知,,
又因为,得到,所以.
【详解】因为,结合题意,由靴子图ABEFC知,,,由靴子图知,,
,
即,
,
【点睛】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质.
13.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
【答案】(1)证明见解析;(2);(3).
【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
中考数学二轮培优专题04 翘脚模型(2份打包,原卷版+解析版): 这是一份中考数学二轮培优专题04 翘脚模型(2份打包,原卷版+解析版),共11页。试卷主要包含了基础知识回顾,模型的概述等内容,欢迎下载使用。
模型12 脚拉脚模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型12 脚拉脚模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型12脚拉脚模型原卷版docx、模型12脚拉脚模型解析版docx等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
专题04 修桥选址模型(解析版): 这是一份专题04 修桥选址模型(解析版),共14页。试卷主要包含了题型特征,模型本质等内容,欢迎下载使用。