终身会员
搜索
    上传资料 赚现金
    专题02 最短路径问题2(解析版)
    立即下载
    加入资料篮
    专题02 最短路径问题2(解析版)01
    专题02 最短路径问题2(解析版)02
    专题02 最短路径问题2(解析版)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题02 最短路径问题2(解析版)

    展开
    这是一份专题02 最短路径问题2(解析版),共18页。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     


     

     

     

    【模型1

    蚂蚁沿圆柱体的表面爬行,从A点爬行n圈到B点的最短路径?

                    

     

    【解决方法一】

           

    1AB=nAC=

     

    【解决方法二】

    2AB=

     

    【结论】

    最短路径可分圈计算,亦可整体计算,注意:异侧半周长、同侧整周长

     

    【模型2

    蚂蚁吃蜂蜜问题:蚂蚁从圆柱体的外壁A处爬行到内壁B处的最短路径?

      

    【路径演示】

       

    由图可知蚂蚁爬行的最短路径AB=

     

    方法点拨

    一、解决方法:

    确定水平方向移动路程确定竖直方向移动路程

    利用勾股定理求解

    二、方法解析:


     

     

    1..如图所示,在正三棱柱ABCA1B1C1中,已知ABBCCA2AA14,一只蚂蚁从A点出发绕三棱柱侧面两圈到达点A1,则蚂蚁爬行的最短距离为(  )

    A B2+2 C4 D4

    【解答】解:如图,把侧面展开两周,矩形对角线即为蚂蚁爬行的最短距离,

    蚂蚁爬行的最短距离=4

    故选:D

    2.如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的爬行最短路线长为(杯壁厚度不计)(  )

    A12cm B17cm C20cm D25cm

    【解答】解:如图:

    将杯子侧面展开,

    A关于EF的对称点A

    AF+BF为蚂蚁从外壁A处到内壁B处的最短距离,即AB的长度,

    AB17cm),

    蚂蚁从外壁A处到内壁B处的最短距离为17cm

    故选:B

    3.如图,C为线段BD上一动点,分别过点BDABBDEDBD,连接ACEC.已知AB4DE2BD8,设CDx

    1)用含x的代数式表示AC+CE的长.

    2)观察图形,请问在什么情况下,AC+CE的值最小?最小值多少?写出计算过程.

    3)求代数式+的最小值.

    【解答】解:(1AC+CE

    2)当ACE三点共线时,AC+CE的值最小,

    A点作AF平行于BDED的延长线于点F,得矩形ABDF

    DFAB4AFBD8EFED+DF2+46

    所以

    AC+CE的最小值为10

    3)构造图形作BD4,分别过点BDABBDEDBDAB2DE1

    C为线段BD上一动点,设BCx

    ACE三点共线时,AE的长即为代数式的最小值.

    A点作AF平行于BDED的延长线于点F,得矩形ABDF

    DFAB2AFBD4EFED+DF1+23

    所以

    A点作AF平行于BDED的延长线于点F,得矩形ABDF.则DFAB4AFBD8EFED+DF2+46BF

    AC+CE的最小值为5

     

     

     

     

    1.如图,一个圆柱形工艺品高为18厘米,底面周长12厘米.现在需要从下底的A处绕侧面两周,到上底BA的正上方)处镶嵌一条金丝,则金丝至少 30 厘米.

    【解答】解:如图,设AB的中点为M,侧面展开图是ABCDCD的中点是N

    则金丝的最小值为侧面展开图中的AN+MC

    ANMC15(厘米),

    金丝至少15×230厘米.

    故答案为:30

    2.如图.长方体的底面是边长2cm的正方形,高为6cm.如果从点A开始经过4个侧面缠绕2圈到达B,那么所用细线最短需要 2 cm

    【解答】解:将长方体的侧面沿AB展开,取AB的中点C,取AB的中点C,连接BCAC,则AC+BC为所求的最短细线长,

    AC2AA2+AC2ACcm

    BC2BB2+CB273

    BCcm),

    AC+BC2cm),

    答:所用细线最短长度是2cm

    故答案为:2

    3.如图,小冰想用一条彩带缠绕圆柱4圈,正好从A点绕到正上方的B点,已知圆柱底面周长是3m,高为5m,则所需彩带最短是 13 m

    【解答】解:如图,将这个圆柱体侧面展开得,

    由勾股定理得,

    AC13

    故答案为:13

    4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部2cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿2cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是(  )

    A13cm Bcm Ccm Dcm

    【解答】解:如图:

    高为12cm,底面周长为10cm,在容器内壁离容器底部2cm的点B处有一饭粒,

    此时蚂蚁正好在容器外壁,离容器上沿2cm与饭粒相对的点A处,

    AD5cmBD122+AE12cm

    将容器侧面展开,作A关于EF的对称点A

    连接AB,则AB即为最短距离,

    AB13cm),

    故选:A

    5.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为(  )

    A12cm B14cm C20cm D24cm

    【解答】解:如图:将圆柱展开,EG为上底面圆周长的一半,

    A关于E的对称点A',连接A'BEGF,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF的长,即AF+BFA'B20cm

    延长BG,过A'A'DBGD

    AEA'EDG4cm

    BD16cm

    RtA'DB中,由勾股定理得:A'D12cm

    则该圆柱底面周长为24cm

    故选:D

    6.如图,AB是笔直公路l同侧的两个村庄,且两个村庄到公路的距离分别是300m500m,两村庄之间的距离为d(已知d2400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,问最小值是多少?

    【解答】解:作点B关于公路l的对称点B,连接AB交公路于点C

    此时满足停靠站到两村之和距离最小,此时的距离之和=CA+CBCA+CB'AB'

    ADBB'于点D,则CB+CACB'+CAAB'

    由题意得,AB2d2400000m2DBBEDEBEAF200mDB'DE+EB'800m

    RTADB中,AD2AB2BD240000040000360000

    RTADB'中,AB'1000米.

    答:停靠站建在点C出使得两村到停靠站的距离之和最小,最小值为1000米.

    7.如图,笔直的公路上有AB两个站点相距40km,在公路的同侧有CD两个村庄,DAABCBAB,且DA20kmCB10km,现政府决定在AB之间建一个土特产加工基地E

    1)若要使土特产加工基地E点到CD两村的距离相等,请用直尺和圆规在图1中作出点E

    2)在(1)的条件下求出基地EA站的距离;

    3)若要使土特产加工基地E点到CD两村的距离和(即DE+EC)最小,求出此最小的距离和.

    【解答】解:(1)如图,点E即为所求.

    2E为线段CD的垂直平分线的交点,

    DECE

    DAABCBAB

    ∴∠AB90°

    AD2+AE2CB2+BE2

    202+AE2=(40AE2+102

    AEkm).

     

    3)作点D关于AB的对称点D,连接CDAB于点E,(DE+CE)的最小值即为(DE+EC)的值,

    CFADF

    RtCFD中,CD50km

    最小距离为50km

    8.数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过以形助数以数解形即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.

    1)【思想应用】已知mn均为正实数,且m+n2,求的最小值.通过分析,爱思考的小明想到了利用下面的构造解决此问题:如图,AB2AC1BD2ACABBDAB,点E是线段AB上的动点,且不与端点重合,连接CEDE,设AEmBEn

    用含m的代数式表示CE  ,用含n的代数式表示DE  

    据此求的最小值;

    2)【类比应用】根据上述的方法,代数式的最小值是 20 

    【解答】解:(1RtACE中,CE

    RtBDE中,DE

    CE+DE

    CE+DECD(当且仅当CED共线时取等号),

    DHCACA的延长线于H,如图,易得四边形ABDH为矩形,

    AHBD2DHAB2

    RtCHD中,CD

    CE+DE的最小值为

    的最小值为

    2)如图,设AB16CA5BD7AEx,则BE16x

    RtACE中,CE

    RtBDE中,DE

    CE+DE

    CE+DECD(当且仅当CED共线时取等号),

    DHCACA的延长线于H,如图,易得四边形ABDH为矩形,

    AHBD7DHAB16

    RtCHD中,CD20

    CE+DE的最小值为20

    的最小值为20

    故答案为+20

    9.如图,在平面直角坐标系中,点Aa0),ABx轴,且AB10,点C0b),ab满足b++15.点Pt0)是线段AO上一点(不包含AO).

    1)当t5时,求PBPC的值;

    2)当PC+PB最小时,求t的值;

    3)请根据以上的启发,解决如下问题:正数mn满足m+n10,且正数p+,则正数p的最小值= 2 

    【解答】解:(1)依题意,得,

    解得,a25

    b15

    A250),C015),

    ABxAB10

    B2510),

    t5时,P50),

    PB

    pc

    PBPC1

    2)如图,作点B关于x轴的对称点B,连接CBx轴于点P

    根据两点之间,线段最短可得此时,

    PC+PBPC+PBCB的值最小,

    设直线CB的解析式为ykx+15

    B2510)关于x轴的对称点为B2510),

    25k+1510

    k1

    yx+15

    y0代入得,x15

    t15

    3)依题意,得n10m

    p+

    即求(m0)到(03)和到(105)的距离和的最小值,

    由(2)可知(105)关于x轴对称点为(105),

    p

    故答案为:2

     

     

     

    2007义乌市)李老师在与同学进行蚂蚁怎样爬最近的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.

    1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;

    2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;

    3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且AOA1120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A

    【解答】解:

    1cm);

     

    2)画图分两种情况:

    当横向剪开时:cm),

    当竖向剪开时:cm);

    最短路程为cm

     

    3)如图所示:

    连接AA1,过点OODAA1于点D

    RtADORtA1DO中,

    OAOA1

    ADA1DAODAOA160°

    ADOAsin60°4×2cm),

    AA12AD4cm),

    所求的最短的路程为AA1cm


     

    相关试卷

    专题01 最短路径问题1(解析版): 这是一份专题01 最短路径问题1(解析版),共17页。

    沪科版八年级下册第18章 勾股定理综合与测试同步达标检测题: 这是一份沪科版八年级下册第18章 勾股定理综合与测试同步达标检测题,文件包含专题185勾股定理与最短路径问题重难点培优解析版docx、专题185勾股定理与最短路径问题重难点培优原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题: 这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题,共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题02 最短路径问题2(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map