所属成套资源:北师大版2023年中考数学一轮复习单元练习题及答案
北师大版2023年中考数学一轮复习《图形的相似》单元练习(含答案)
展开
这是一份北师大版2023年中考数学一轮复习《图形的相似》单元练习(含答案),共11页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
北师大版2023年中考数学一轮复习《图形的相似》单元练习一 、选择题1.下列各组中得四条线段成比例的是( )A.4cm、2cm、1cm、3cmB.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cmD.1cm、2cm、2cm、4cm2.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为( ) A. B.2 C. D.3.下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个4.某机器零件在图纸上的长度是21 mm,它的实际长度是630 mm,则图纸的比例尺是( )A.1∶20 B.1∶30 C.1∶40 D.1∶505.已知△ABC∽△A′B′C′且=,则S△ABC∶S△A′B′C′为( )A.1∶2 B.2∶1 C.1∶4 D.4∶16.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,,,乙三角形木框的三边长分别为5,,,则甲、乙两个三角形( )A.一定相似 B.一定不相似 C.不一定相似 D.无法判断7.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于( ) A.6 B.5 C.9 D.8.如图,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )A.1 B.2 C.3 D.49.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )A.6.4米 B.7米 C.8米 D.9米10.如图,在△ABC 中,∠C=90°,BC=3,D,E 分别在 AB、AC上,将△ADE沿DE翻折后,点A正好落在点A′处,若A′为CE的中点,则折痕DE的长为( )A. B.3 C.2 D.1 11.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1和S2,比较S1与S2的大小( )A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定12.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为( ) A.0.5cm B.1cm C.1.5cm D.2cm二 、填空题13.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,则这两个四边形每组对应顶点到位似中心的距离的比值是__________.14.若四边形ABCD与四边形A/B/C/D/的相似比为3∶2,那么四边形A/B/C/D/与四边形ABCD的相似比为 .15.如图,△ABC中,DE∥BC,交边AB、AC于D、E,若AE:EC=1:2,AD=3,则BD= .16.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.17.如图,已知零件的外径为25 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)测量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10 mm,则零件的厚度x=_____mm.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 .三 、作图题19.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即S1:S2 = (不写解答过程,直接写出结果).四 、解答题20.如图,已知点C,D在线段AB上,△PCD是等边三角形,且AC=1,CD=2,DB=4.求证:△ACP∽△PDB. 21.如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB. 22.一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高. 23.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)求证:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过BC上的点D与AB交于点E,连接DE,若E是AB的中点.(1)求点D的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标. 25.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
答案1.D2.D3.C.4.B5.C6.A.7.A.8.C.9.C10.D11.B.12.C.13.答案为:.14.答案为:3:2.15.答案为:6.16.答案为:4.17.答案为:2.5.18.答案为:.19.解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)1:4.20.证明:∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,PC=CD=PD=2,∴∠PCA=∠PDB=120°,∵AC=1,BD=4,∴,=,∴=,∴△ACP∽△PDB.21.证明:(1)∵AB∥CD,∴∠B=∠C,又∠C=∠EAF,∴∠EAF=∠B (2)∵∠EAF=∠B,∠AFE=∠BFA,∴△AFE∽△BFA,则=,∴AF2=FE·FB22.解:由题意知AM=BN=1.75m,设CD=xm.∵AE=AM,AM⊥EC,∴∠E=45°,∴EC=CD=xm,AC=(x-1.75)m.∵CD⊥EC,BN⊥EC,∴BN∥CD,∴△ABN∽△ACD,∴=,即=,解得x=6.125.答:路灯CD的高为6.125m.23.证明:(1)∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°.∵AC=AD,∴∠ACD=∠ADC.∴∠ADC+∠BDC=90°.又∵PD⊥AD,∴∠ADC+∠PDC=90°.∴∠BDC=∠PDC.(2)解:如图,过点C作CM⊥PD于点M.∵∠BDC=∠PDC,CM⊥PD,AC⊥BD,∴CE=CM.∵∠CMP=∠ADP=90°,∠P=∠P,[∴△CPM∽△APD.∴=.设CM=CE=x,∵CE∶CP=2∶3,∴PC=x.∵AB=AD=AC=1,∴=.解得x=,即CE=.[经检验,x=是方程的解且符合题意.故AE=AC-CE=1-=.24.解:(1)∵四边形OABC为矩形,∴AB⊥x轴.∵E为AB的中点,点B的坐标为(2,3),∴点E的坐标为(2,).∵点E在反比例函数y=的图象上,∴k=3,∴反比例函数的解析式为y=.∵四边形OABC为矩形,∴点D与点B的纵坐标相同,将y=3代入y=可得x=1,∴点D的坐标为(1,3).(2)由(1)可得BC=2,CD=1,∴BD=BC-CD=1.∵E为AB的中点,∴BE=.若△FBC∽△DEB,则=,即=,∴CF=,∴OF=CO-CF=3-=,∴点F的坐标为(0,).若△FBC∽△EDB,则=,即=,∴CF=3,此时点F和点O重合.综上所述,点F的坐标为(0,)或(0,0).25.解:(1)∵OA=OC,∴∠A=∠ACO,∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线(2)∵PC=AC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P,∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠CBO=∠COB,∴BC=OC,∴BC=AB(3)连结MA,MB,∵点M是弧AB的中点,∴=,∴∠ACM=∠BCM,∵∠ACM=∠ABM,∴∠BCM=∠ABM,∵∠BMC=∠NMB,∴△MBN∽△MCB,∴=,∴BM2=MC·MN,∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM,∵AB=4,∴BM=2,∴MC·MN=BM2=8.
相关试卷
这是一份中考数学一轮复习考点过关练习考点23 图形的相似 (含答案),共1页。
这是一份中考数学一轮复习《图形的相似》课时跟踪练习(含答案),共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《图形的相似》导向练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。