所属成套资源:2022-2023学年八年级数学下册专题提优及章节测试卷[人教版]
专题24 一次函数图象与几何变换之平移、旋转与对称-2022-2023学年八年级数学下册专题提优及章节测试卷(人教版)
展开
这是一份专题24 一次函数图象与几何变换之平移、旋转与对称-2022-2023学年八年级数学下册专题提优及章节测试卷(人教版),文件包含专题24一次函数图象与几何变换之平移旋转与对称解析版docx、专题24一次函数图象与几何变换之平移旋转与对称原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题24 一次函数图象与几何变换之平移、旋转与对称(原卷版)类型一 平移1.(2022秋•南京期末)将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为( )A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+72.(2022秋•埇桥区期中)将直线y=x+1向上平移5个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法错误的是( )A.函数图象经过第一、二、三象限 B.函数图象与x轴的交点在x轴的正半轴 C.点(﹣2,4)在函数图象上 D.y随x的增大而增大3.(2019•雅安)如图,在平面直角坐标系中,直线l1:yx+1与直线l2:yx交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为( )A.()n B.()n+1 C.()n﹣1 D.4.(2022•南京模拟)如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移.在平移过程中,直线被平行四边形ABCD截得的线段长度m与直线在x轴上平移的距离t的函数图象如图2所示,那么平行四边形ABCD的面积为( ) A.5 B. C.10 D.5.(2021秋•白银期末)已知点P(1,2)关于x轴的对称点为P',且P'在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .6.(2008秋•宿迁期末)已知直线l1:y=kx+b与直线y=2x平行,且与坐标轴围成的三角形的面积为4.(1)求直线l1的解析式;(2)直线l1经过怎样平移可以经过原点;(3)求直线l1关于y轴对称的直线的解析式. 类型二 旋转7.(2022•碑林区二模)把一次函数y=x+1的图象绕点(2,0)顺时针旋转180°所得直线的表达式为( )A.y=﹣x+2 B.y=﹣x+3 C.y=x﹣4 D.y=x﹣58.(2022•安阳县一模)将y=x的函数图象绕点(1,1)顺时针旋转90°以后得到的函数图象是( )A. B. C. D.9.(2021秋•华容区期末)已知一次函数y=3x+12的图象与x轴、y轴分别相交于A、B两点,将直线AB绕点A顺时针旋转90°,则点B的对应点B'的坐标为( )A.(8,﹣4) B.(﹣16,4) C.(12,8) D.(﹣12,16)10.(2021秋•三元区期末)如图,在平面直角坐标系xOy中,直线yx+4分别与x轴,y轴交于点A,B,将直线AB绕点A顺时针旋转90°后,所得直线与y轴的交点坐标为( )A.(0,﹣4) B.(0,) C.(0,) D.(0,)11.(2022秋•虹口区校级月考)平面直角坐标系中有一直线l1:y=﹣2x+5,先将其向右平移3个单位得到l2,再将l2作关于x轴的对称图形l3,最后将l3绕l3与y轴的交点逆时针旋转90°得到l4,则直线l4的解析式为( )A. B. C. D.12.(2022•秦淮区校级模拟)将函数y=﹣2x+4的图象绕图象上一点P旋转n°(45<n<90),若旋转后的图象经过点(3,5),则点P的横坐标不可能是( )A.﹣1 B.0 C.1 D.213.(2022•敖汉旗一模)如图一次函数y=x的图象与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C.则线段AC的长为 .14.(2022春•顺德区校级月考)如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q的坐标为 .
15.(2022秋•渠县期末)【建立模型】课本第7页介绍:美国总统伽菲尔德利用图1验证了勾股定理,直线l过等腰直角三角形ABC的直角顶点C:过点A作AD⊥l于点D,过点B作BE⊥l于点E研究图形,不难发现:△MDC≌△CEB.(无需证明):【模型运用】(1)如图2,在平面直角坐标系中,等腰Rt△ACB,∠ACB=90°,AC=BC,点C的坐标为(0,﹣2),A点的坐标为(4,0),求B点坐标;(2)如图3,在平面直角坐标系中,直线l1:y=2x+4分别与y轴,x轴交于点A,B,将直线l1绕点A顺时针或逆时针旋转45°得到l2,请任选一种情况求l2的函数表达式;(3)如图4,在平面直角坐标系,点B(6,4),过点B作AB⊥y轴于点A,作BC⊥x轴于点C,P为线段BC上的一个动点,点Q(a,2a﹣4)位于第一象限.问点A,P,Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出a的值;若不能,请说明理由.
类型三 对称16.(2021秋•藤县期末)直线y=2x+3与直线l关于x轴对称,则直线l的解析式为( )A.y=2x+3 B.y=2x﹣3 C.y=﹣2x+3 D.y=﹣2x﹣317.已知,点A(m+1,1),B(3,n﹣2)关于x轴对称,则一次函数y=mnx﹣n的图象大致是图中的( )A. B. C. D.18.(2021秋•新郑市期末)在平面直角坐标系中,已知点A(﹣2,m)在第三象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为( )A.3 B.1 C.﹣1 D.﹣319.(2022秋•苏州期末)如图,直线yx+4交x轴,y轴于点A,B,点P在第一象限内,且纵坐标为4.若点P关于直线AB的对称点P'恰好落在x轴的正半轴上,则点P'的横坐标为( )A. B. C. D.20.(2021春•莒南县期末)若直线L1经过点(0,4),L2经过点(3,2),且L1与L2关于x轴对称,则L1与L2的交点坐标为 .21.已知直线l1的解析式为y=2x﹣6,直线l2与直线l1关于y轴对称,则直线l2的解析式为 .22.(2022•南通一模)已知一次函数y=2x+3,则该函数图象关于直线y=x对称的函数解析式为 .23.(2022秋•望花区校级期末)如图,在平面直角坐标系中,直线交x轴于点A、交y轴于点B,C点与A点关于y轴对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,点P的坐标是 .24.(2022秋•沙坪坝区期末)如图,正比例函数y1=x与一次函数交于点A(﹣1,m).(1)求出一次函数y2的解析式,并在图中画出一次函数y2的图象;(2)点C与点B(4,2)关于y1函数图象对称,过点B作直线BD∥x轴,交一次函数y2的图象于点D,求△CBD的面积.25.(2022秋•临川区校级期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的[l1,l2]伴随图形.例如:点P(2,1)的[x轴,y轴]伴随图形是点P'(﹣2,﹣1).(1)点Q(﹣3,﹣2)的[x轴,y轴]伴随图形点Q'的坐标为 ;(2)已知A(t,1),B(t﹣3,1),C(t,3),直线m经过点(1,1).①当t=﹣1,且直线m与y轴平行时,点A的[x轴,m]伴随图形点A'的坐标为 ;②当直线m经过原点时,若△ABC的[x轴,m]伴随图形上只存在两个与x轴的距离为0.5的点,直接写出t的取值范围.