所属成套资源:2023年中考数学一轮复习考点 通关练习题(含答案)
2023年中考数学一轮复习考点《全等三角形》通关练习题(含答案)
展开
这是一份2023年中考数学一轮复习考点《全等三角形》通关练习题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习考点《全等三角形》通关练习题一 、选择题1.下列说法正确的有( )①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个 B.2个 C.3个 D.4个2.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那幅图是( )3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )A.40° B.30° C.35° D.25°4.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SAS B.ASA C.SSS D.AAS6.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长.判定△ABC≌△DEC的理由是( ) A.SSS B.ASA C.AAS D.SAS7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1 B.2 C.3 D.48.阅读下面材料:在数学课上,老师提出如下问题:尺规作图1,作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AO小明同学作法如下,如图2:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;③以点O′为圆心,以OC长为半径作弧,交O′A′于C′;④以点C′为圆心,以CD为半径作弧,交③中所画弧于D′;⑤过点D′作射线O′B′,则∠A′O′B′就是所求的角.老师肯定小明的作法正确,则小明作图的依据是( )A.两直线平行,同位角相等B.两平行线间的距离相等C.全等三角形的对应角相等D.两边和夹角对应相等的两个三角形全等二 、填空题9.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).10.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A= .11.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得到△AOD≌△COB,从而可以得到AD= .12.在△ABC和△FED中,BE=FC,∠A=∠D.当添加条件 时(只需填写一个你认为正确的条件),就可得到△ABC≌△DFE,依据是 .13.如图,在四边形ABCD中,AD∥BC,沿AM对折,使点D落在BC上点N处.若∠D=90°,∠AMD=60°,则∠ANB= ,∠CMN= . 14.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.三 、解答题15.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE. 16.已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′= ,∴△C′O′D′≌△COD( )∴∠A′O′B′=∠AOB.( )17.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性. 18.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足.求证:①AC=AD; ②CF=DF. 19.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE. 20.如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且|m﹣n−3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
答案1.B2.C.3.C 4.B5.A6.D7.D8.C.9.答案为:不是10.答案为:30°.11.答案为:∠COB,SAS,CB.12.答案为:∠B=∠DEC,AAS13.答案为:60°,60°.14.答案为:3.15.证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.16.解:(1)如图所示,∠A′O′B′即为所求;(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,∴△C′O′D′≌△COD(SSS)∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)故DC,SSS,全等三角形的对应角相等.17.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.18.证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵△ABC≌△AEDAC=AD∵AF⊥CD,∴∠AFC=∠AFD=90° ∵AF=AF∴△AFC≌△AFD(SAS)∴CF=FD.19.证明:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵CG平分∠ACB,∴∠BCG=∠ACB=45°,∴∠CAB=∠BCG,在△ACF和△CBG中,,∴△ACF≌△CBG(ASA),∴AF=CG.(2)如图,延长CG交AB于点H.∵AC=BC, CG平分∠ACB,∴CH⊥AB,且点H是AB的中点,又∵AD⊥AB,∴CH∥AD,∴∠D=∠CGE,又∵点H是AB的中点,∴点G是BD的中点,∴DG=GB,∵△ACF≌△CBG,∴CF=BG,∴CF=DG,∵E为AC边的中点,∴AE=CE,在△AED和△CEG中,,∴△AED≌△CEG(AAS),∴DE=GE,∴DG=2DE,又∵CF=DG,∴CF=2DE.20.解:(1)∵由题意可知,∴m﹣n﹣3=0,2n﹣6=0,解得:n=3,m=6,∴OA=6,OB=3;(2)分为两种情况:①当P在线段OA上时,AP=t,PO=6﹣t,∴△BOP的面积S=×(6﹣t)×3=9﹣t,∵若△POB的面积不大于3且不等于0,∴0<9﹣ t≤3,解得:4≤t<6;②当P在线段OA的延长线上时,如图,AP=t,PO=t﹣6,∴△BOP的面积S=×(t﹣6)×3=t﹣9,∵若△POB的面积不大于3且不等于0,∴0<t﹣9≤3,解得:6<t≤8;即t的范围是4≤t≤8且t≠6;(3)分为两种情况:①当OP=OA=6时,E应和B重合,但是此时PE和AB又不垂直,即此种情况不存在;②当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P,使△EOP≌△AOB,t的值是3或9.
相关试卷
这是一份2023年中考数学一轮复习考点《图形的对称》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《视图与投影》通关练习题(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《实数》通关练习题(含答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。