- 课时跟踪检测(二十) 列联表与独立性检验 试卷 0 次下载
- 课时跟踪检测(九) 条件概率 试卷 0 次下载
- 课时跟踪检测(七) 二项式定理 试卷 1 次下载
- 课时跟踪检测(三) 排列 试卷 0 次下载
- 课时跟踪检测(十) 全概率公式 试卷 0 次下载
课时跟踪检测(六) 组合的综合应用
展开课时跟踪检测(六) 组合的综合应用
1.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这2个球同色的不同取法有( )
A.27种 B.24种
C.21种 D.18种
解析:选C 分两类:一类是2个白球有C=15种取法,另一类是2个黑球有C=6种取法,所以共有15+6=21种取法.
2.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为( )
A.120 B.84
C.52 D.48
解析:选C 间接法:C-C=52种.
3.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )
A.10种 B.15种
C.20种 D.30种
解析:选C 按比赛局数分类:3局时有2种,4局时有2C种,5局时有2C种,故共有2+2C+2C=20种.
4.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为( )
A.320 B.160
C.96 D.60
解析:选A 按③→①→②→④的顺序涂色,有C×C×C×C=5×4×4×4=320种不同的方法.
5.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有( )
A.56种 B.68种
C.74种 D.92种
解析:选D 根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有CC种,有一个“多面手”的选派方法有CCC种,有两个“多面手”的选派方法有CC种,即共有20+60+12=92种不同的选派方法.
6.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有________种.
解析:把4名学生分成3组有C种方法,再把3组学生分配到3所学校有A种方法,故共有CA=36种保送方案.
答案:36
7.将9名教师分到3所中学任教,一所2名,一所3名,一所4名,则有________种不同的分法.
解析:CCCA=7 560(种).
答案:7 560
8.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有______种.(以数字作答)
解析:从10个球中任取3个,有C种方法.取出的3个球与其所在盒子的标号不一致的方法有2种.所以共有2C=240种方法.
答案:240
9.一个口袋里装有7个白球和2个红球,从口袋中任取5个球.
(1)共有多少种不同的取法?
(2)恰有1个为红球,共有多少种取法?
解:(1)从口袋里的9个球中任取5个球,不同的取法为C=126(种).
(2)可分两步完成,首先从7个白球中任取4个白球,有C种取法,然后从2个红球中任取1个红球共有C种取法.所以共有C·C=70种取法.
10.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现下列结果:
(1)4只鞋子没有成双的;
(2)4只鞋子恰有两双;
(3)4只鞋子有2只成双,另2只不成双.
解:(1)从10双鞋子中选取4双,有C种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理可知,选取种数为N=C×24=3 360.
(2)从10双鞋子中选2双有C种取法,即有45种不同取法.
(3)先选取一双有C种选法,再从9双鞋中选取2双有C种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法种数为N=CC×22=1 440.
1.如图是由6个正方形拼成的矩形图案,从图中的12个顶点中任取3个点作为一组.其中可以构成三角形的组数为( )
A.208 B.204
C.200 D.196
解析:选C 任取的3个顶点不能构成三角形的情形有3种:一是3条横线上的4个点,其组数为3C;二是4条竖线上的3个点,其组数为4C;三是4条对角线上的3个点,其组数为4C,所以可以构成三角形的组数为C-3C-8C=200,故选C.
2.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各2名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学来自同一年级的乘车方式共有( )
A.24种 B.18种
C.48种 D.36种
解析:选A 第一类:大一的孪生姐妹在甲车上,甲车上剩下2名同学要来自不同的年级,从三个年级中选两个年级,有C种选法,然后从选出的两个年级中再分别选1名同学,有CC种选法,剩下的4名同学乘坐乙车,则有CCC=3×2×2=12种乘车方式;
第二类:大一的孪生姐妹不在甲车上,则从剩下的三个年级中选同一个年级的2名同学在甲车上,有CC种选法,然后再从剩下的两个年级中分别选1名同学,有CC种选法,则有CCCC=3×1×2×2=12种乘车方式.因此共有12+12=24种不同的乘车方式.
3.以正方体的顶点为顶点的四面体共有________个.
解析:先从8个顶点中任取4个的取法为C种,其中,共面的4点有12个,则四面体的个数为C-12=58个.
答案:58
4.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?
解:因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有C×2×2×2=160(种).
5.已知平面α∥平面β,在α内有4个点,在β内有6个点.
(1)过这10个点中的3点作一平面,最多可作多少个不同的平面?
(2)以这些点为顶点,最多可作多少个三棱锥?
(3)(2)中的三棱锥最多可以有多少个不同体积?
解:(1)所作出的平面有三类.
①α内1点,β内2点确定的平面,最多有C·C个.
②α内2点,β内1点确定的平面,最多有C·C个.
③α,β本身,有2个.
故所作的平面最多有C·C+C·C+2=98(个).
(2)所作的三棱锥有三类.
①α内1点,β内3点确定的三棱锥,最多有C·C个.
②α内2点,β内2点确定的三棱锥,最多有C·C个.
③α内3点,β内1点确定的三棱锥,最多有C·C个.
故最多可作出的三棱锥有C·C+C·C+C·C=194(个).
(3)当等底面积、等高时,三棱锥的体积相等,所以体积不相同的三棱锥最多有C+C+C·C=114(个).故最多有114个体积不同的三棱锥.
新高考数学一轮复习课时跟踪检测(三十三)数列的综合应用(含解析): 这是一份新高考数学一轮复习课时跟踪检测(三十三)数列的综合应用(含解析),共8页。试卷主要包含了综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。
新高考数学一轮复习课时跟踪检测(七)函数性质的综合应用(含解析): 这是一份新高考数学一轮复习课时跟踪检测(七)函数性质的综合应用(含解析),共7页。试卷主要包含了综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。
高中数学高考课时跟踪检测(三十三) 数列的综合应用 作业: 这是一份高中数学高考课时跟踪检测(三十三) 数列的综合应用 作业,共8页。试卷主要包含了综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。