华师大版七年级下册7.4 实践与探索当堂检测题
展开这是一份华师大版七年级下册7.4 实践与探索当堂检测题,共8页。
1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组( )
A.
B.
C.
D.
2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水( )立方米.
A.288B.296C.302D.316
3.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是( )
A.B.
C.D.
4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为( )
A.B.
C.D.
二.填空题(共3小题)
5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组 .
6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为 .
7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为 .
三.解答题(共5小题)
8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.
(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示 ,y表示 ;并写出该方程组中?处的数应是 ,*处的数应是 ;
(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?
9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)
10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?
11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?
12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?
7.4.3二元一次方程组解决工程问题
参考答案与试题解析
一.选择题(共4小题)
1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组( )
A.
B.
C.
D.
【解答】解:设1台大收割机和1台小收割机每小时各收割小麦x公顷,y公顷,
由题意得,,
故选:A.
2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水( )立方米.
A.288B.296C.302D.316
【解答】解:设池中原有水为a立方米,出水速度为每分钟x立方米,
则有:,
解得:a=288,x=7.
即池中原有水288立方米.
故选:A.
3.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是( )
A.B.
C.D.
【解答】解:设用x张制作盒身,y张制作盒底,
根据题意得:.
故选:C.
4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为( )
A.B.
C.D.
【解答】解:∵每三人共乘一车,最终剩余2辆车,
∴3(y﹣2)=x;
∵若每2人共乘一车,最终剩余9个人无车可乘,
∴x=2y+9.
∴可列方程组为.
故选:C.
二.填空题(共3小题)
5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组 .
【解答】解:由题意可得,
,
故答案是:.
6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为 .
【解答】解:设该校购进洗手液x瓶,该校购进84消毒液y瓶,根据题意可得:,
故答案为:.
7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为 20 .
【解答】解:由题意,得,
解得:.
∴x+y=20.
故答案为:20.
三.解答题(共5小题)
8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.
(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示 甲队修路的天数 ,y表示 乙队修路的天数 ;并写出该方程组中?处的数应是 15 ,*处的数应是 335 ;
(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?
【解答】解:(1)根据方程组中第二个方程可得x是与甲队每天修建的长度相乘,y是与乙队每天修建的长度相乘,这样可得出x、y分别是甲、乙两队各自修路的天数,从而得到x+y=15,20x+25y=335;
故答案为:甲队修路的天数;乙队修路的天数;15;335;
(2)方程组为:,
由①得,x=335﹣y③,
将③式代入②式得,,
解得,y=175,
所以,乙队修建了175米,修建的天数为(天).
答:乙队修建了175米,修建了7天.
9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)
【解答】解:设用xm3的木材做桌面,用ym3的木材做桌腿,根据题意得出:
,
解得:,
答:用6m3的木材做桌面,用4m3的木材做桌腿,才能使桌面和桌腿刚好配套.
10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?
【解答】解:设甲每天做x个零件,乙每天做y个零件,则
,
解得.
故甲每天做80个零件,乙每天做50个零件.
11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?
【解答】解:设改进加工方法前用了x天,改进加工方法后用了y天,
依题意,得:,
解得:.
答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.
12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?
【解答】解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
依题意得:,
解得 .
答:甲、乙两种型号的挖掘机各需5台、3台;
(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.
依题意得:60m+80n=540,化简得:3m+4n=27.
∴m=9﹣n,
∴方程的解为或或.
当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;
当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求;
当m=9,n=0时,支付租金:100×9+120×0=900元>850元,超出限额;
答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.
租金(单位:元/台•时)
挖掘土石方量(单位:m3/台•时)
甲型挖掘机
100
60
乙型挖掘机
120
80
租金(单位:元/台•时)
挖掘土石方量(单位:m3/台•时)
甲型挖掘机
100
60
乙型挖掘机
120
80
相关试卷
这是一份初中数学苏科版七年级下册10.2 二元一次方程组同步达标检测题,共17页。试卷主要包含了5万个,8 .等内容,欢迎下载使用。
这是一份苏科版七年级下册10.5 用二元一次方程解决问题复习练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学华师大版七年级下册7.4 实践与探索当堂达标检测题,共14页。试卷主要包含了一道来自课本的习题等内容,欢迎下载使用。