所属成套资源:2023中考数学全国通用专题备考试卷[亮点专题]
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版) 试卷 1 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题02 韦达定理问题(原卷版+解析版) 试卷 2 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题03 黄金分割问题(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 反比例函数的k值问题(原卷版+解析版) 试卷 0 次下载
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题06 数式图坐标规律问题(原卷版+解析版)
展开
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题06 数式图坐标规律问题(原卷版+解析版),文件包含专题06数式图坐标规律问题解析版docx、专题06数式图坐标规律问题原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2023年中考数学二轮冲刺精准练新策略(全国通用)第四篇 常考的亮点专题专题06 数式图坐标规律问题1.(2022重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15 B. 13 C. 11 D. 92. (2022新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A. 98 B. 100 C. 102 D. 1043. (2022山东烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )A. (2)5 B. (2)6 C. ()5 D. ()64.(2022湖南怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是 _____.5.(2022黑龙江绥化)如图,,点在射线上,且,过点作交射线于,在射线上截取,使;过点作交射线于,在射线上截取,使.按照此规律,线段的长为________.6.(2022黑龙江龙东地区)如图,在平面直角坐标系中,点,,,……在x轴上且,,,……按此规律,过点,,,……作x轴的垂线分别与直线交于点,,,……记,,,……的面积分别为,,,……,则______.7. (2022黑龙江齐齐哈尔)如图,直线与轴相交于点,与轴相交于点,过点作交轴于点,过点作轴交于点,过点作交轴于点,过点作轴交于点…,按照如此规律操作下去,则点的纵坐标是______________.8.(2022浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225= ;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.9.(2022安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.10. 如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是( ) A.()n•75° B. ()n﹣1•65° C. ()n﹣1•75° D. ()n•85°11. 3,4,6,9,( ),18A 11 B 12 C 13 D 1412. 8,14,26,50,( )A 76 B 98 C 100 D 10413. 257,178,259,173,261,168,263,( )A 275 B 279 C 164 D 16314.a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为1,﹣1的差倒数,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是( )A.5 B. C. D.15.观察下面由正整数组成的数阵: 照此规律,按从上到下、从左到右的顺序,第51行的第1个数是( )A.2500 B.2501 C.2601 D.260216.观察式子:13=12,13+23=(1+2)2=32,13+23+33=(1+2+3)2=62,13+23+33+43=(1+2+3+4)2=102,…,根据你发现的规律,计算53+63+73+83+93+103的结果是( )A.2925 B.2025 C.3225 D.262517.如图,过点A0(0,1)作y轴的垂线交直线l:yx于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为( )A.()100 B.(3)100 C.34199 D.3239518.如图,在平面直角坐标系中,直线l1:yx+1与直线l2:yx交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为( )A.()n B.()n+1 C.()n﹣1 D.19.如图,平面直角坐标系中,边长为的正方形的顶点、分别在轴、轴上,点在反比例函数的图象上,过的中点作矩形,使顶点落在反比例函数的图象上,再过的中点作矩形,使顶点落在反比例函数的图象上,…,依此规律,作出矩形时,落在反比例函数图象上的顶点的坐标为( )A. B. C. D.20.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“”形纸片,图(2)是一张由6个小正方形组成的方格纸片.把“”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的方格纸片,将“”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有种不同放置方法,则的值是( )A. 160 B. 128 C. 80 D. 4821. (2022四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.22. 观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有 个〇.23.按一定规律排列的一列数依次为,,,,,,…,按此规律排列下去,这列数中第8个数是______,第个数是______(为正整数).24.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为 .25.(2021江苏连云港模拟)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为 (结果用含正整数n的代数式表示)26.观察下列等式:,,.将以上三个等式的两边分别相加,得:.(1)直接写出计算结果:=________.(2)计算:.(3)猜想并直接写出:=________.(n为正整数)27.观察下列各式:;;;;.(1)根据上面各式的规律填空:①______.②______.(2)利用②的结论求的值;(3)若,求的值.28.观察下列各式:, ,,…(1)猜想① .② ,其中n为正整数.(2)计算:.29.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成 个互不重叠的正方形;第4次画线后,分割成 个互不重叠的正方形.发现:第n次画线后,分割成 个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.30.阅读理解并回答问题.(1)观察下列各式:==﹣,==﹣,==﹣,==﹣,==﹣,…请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来= .(2)请利用上述规律计算:(要求写出计算过程)+++…++(3)请利用上述规律,解方程++++=31. (2022湖北鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( )A. 8 B. 6 C. 4 D. 2
相关试卷
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版),文件包含专题04图形位似问题解析版docx、专题04图形位似问题原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题06 整体思想运用(原卷版+解析版),文件包含专题06整体思想运用解析版docx、专题06整体思想运用原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题19 函数解析式问题(原卷版+解析版),文件包含专题19函数解析式问题解析版docx、专题19函数解析式问题原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。