所属成套资源:人教版八年级数学下册同步提升练习
人教版八年级下册16.1 二次根式课后测评
展开
这是一份人教版八年级下册16.1 二次根式课后测评,文件包含专题166二次根式的应用大题提升训练解析版人教版docx、专题166二次根式的应用大题提升训练docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
专题16.6二次根式的应用大题提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 1.(2022秋•桥西区期中)交通警察通常根据刹车后车轮划过的距离估计车辆行驶的速度,所依据的经验公式是v=16,其中v表示车速(单位:km/h),d表示刹车后车轮划过的距离(单位:m),f表示摩擦系数,在某次交通事故调查中测得d=20m,f=1.2.(1)求肇事汽车的速度;(2)若此路段限速70km/h,请通过计算判断肇事汽车是否超速?2.(2022秋•社旗县期中)(1)计算:(﹣2x)3•(3x2﹣xy﹣1)(2)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时间t(单位:s)和高度h(单位:m)近似满足公式(不考虑风速的影响,g≈9.8t/s2).已知一幢大楼高78.4m,若一个鸡蛋从楼顶自由落下,求落到地面所用时间.3.(2022秋•南岸区校级期中)某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为m,宽AB为m,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为(1)m,宽为(1)m.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?4.(2021秋•长安区期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为(1)米,宽为(1)米.(1)长方形ABCD的周长是 米;(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)5.(2021秋•叙州区期末)已知△ABC三条边的长度分别是,,,记△ABC的周长为C△ABC.(1)当x=2时,△ABC的最长边的长度是(请直接写出答案);(2)请求出C△ABC(用含x的代数式表示,结果要求化简);(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S.其中三角形边长分别为a、b、c,三角形的面积为S.若x为整数,当C△ABC取得最大值时,请用秦九韶公式求出△ABC的面积.6.(2022秋•南山区校级期中)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:1.解决问题:(1)在括号内填上适当的数:③①: ,②: ,③ .(2)根据上述思路,化简并求出的值.7.(2022秋•临汾期中)阅读与思考阅读下列材料,并完成相应的任务:法国数学家爱德华•卢卡斯以研究斐波那契数列而著名,他曾给出了求斐波那契数列第n项的表达式,创造出了检验素数的方法,还发明了汉诺塔问题.“卢卡斯数列”是以卢卡斯命名的一个整数数列,在股市中有广泛的应用.卢卡斯数列中的第n个数F(n)可以表示为,其中n≥1.(说明:按照一定顺序排列着的一列数称为数列)任务:(1)卢卡斯数列中的第1个数F(1)= ,第2个数F(2)= ;(2)卢卡斯数列有一个重要特征:当n≥3时,满足F(n)=F(n﹣﹣1)+F(n﹣2).请根据这一规律写出卢卡斯数列中的第6个数F(6).8.(2022秋•商水县校级月考)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)9.(2022秋•新蔡县校级月考)如图,有一张面积为50cm2的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.(1)求长方体盒子的容积;(2)求这个长方体盒子的侧面积.10.(2022秋•中原区校级月考)小明同学在学习的过程中,看到北师大版八年级上册数学课本43页有这样一道题目:如图,两个正方形的边长分别是多少?你能借助这个图形解释吗?小明想了想做出如下解答过程:“如图,大正方形的面积为8,则它的边长为;小正方形的面积为2,则小正方形的边长为.借助这个图形,可以得到大正方形的边长是小正方形边长的2倍,即.”老师夸赞小明做得非常好,继续提出一个新的问题:你能设计一个图形解释吗?请你画出相应的图形并借助图形帮助小明解答这个问题.11.(2022秋•洛宁县月考)如图,有一张长为16cm,宽为8cm的长方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形.(1)若小正方形的边长为cm,则制作成的无盖长方体盒子的体积是多少?(2)求这个长方体盒子的侧面积.12.(2021秋•钱塘区期末)(1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.13.(2022春•海沧区校级期末)有一块矩形木板,木工采用如图沿虚线在木板上截出两个面积分别为12dm2和27dm2的正方形木板.(1)求原矩形木板的面积;(2)如果木工想从剩余的木块(阴影部分)中裁出长为1.5dm,宽为1dm的长方形木条,估计最多能裁出多少块这样的木条,请你计算说明理由.14.(2022春•合阳县期末)海啸是一种破坏力极强的海浪,由海底地震、火山爆发等引起,在广阔的海面上,海啸的行进速度可按公式计算,其中v表示海啸的速度(m/s),d表示海水的深度,g表示重力加速度9.8m/s2.若在海洋深度20m处发生海啸,求其行进的速度.15.(2022春•周至县期末)在一个长为4,宽为3的矩形内部挖去一个边长为(2)的正方形,求剩余部分的面积.16.(2022春•济源期末)【再读教材】:我们八年级下册数学课本第16页介绍了“海伦﹣秦九韶公式”:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.【解决问题】:已知在△ABC中,AC=4,BC=7.5,AB=8.5.(1)请你用“海伦﹣秦九韶公式”求△ABC的面积.(2)除了利用“海伦﹣秦九韶公式”求△ABC的面积外,你还有其它的解法吗?请写出你的解法.17.(2022春•石泉县期末)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位:km),观测者能看到的最远距离为d(单位:km),则d,其中R是地球半径,通常取6400km.小红站在海边的一块岩石上,眼睛离海平面的高度h为5m,她观测到远处一艘船刚露出海平面,求此时观测者能看到的最远距离d约是多少千米?18.(2022春•云南期末)某居民小区有块形状为矩形ABCD的绿地,长BC为米,宽AB为米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?19.(2022春•赣州期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)截出的两块正方形木料的边长分别为 , ;(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出 块这样的木条.20.(2022春•宁乡市期末)如图所示,将一个长宽分别为a,b的长方形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当,,,求剩余部分的面积.21.(2022春•梁平区期末)电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足Q=I2Rt,已知导线的电阻为6Ω,1s时间导线产生30J的热量,求电流I的值.(结果用根式表示)22.(2022春•雁塔区校级期末)请阅读下面材料,并解决问题:海伦——秦九韶公式海伦(约公元50年),古希腊几何学家,在数学史上以解决几何测量问题闻名,在他的著作《度量》一书中证明了一个利用三角形的三条边长直接求三角形面积的公式:假设在平面内,有一个三角形的三条边长分别为a,b,c,记p,那么三角形的面积S.这个公式称为海伦公式.秦九韶(约1202﹣1261年),我国南宋时期的数学家,曾提出利用三角形的三边长求面积的秦九韶公式S.它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.通过公式变形,可以发现海伦公式和秦九韶公式实质是同一个公式,所以海伦公式也称海伦﹣秦九韶公式.问题:如图,在△ABC中,AB=6,AC=7,BC=8,请用海伦一秦九韶公式求△ABC的面积.23.(2021秋•龙岗区校级期中)平面几何图形的许多问题,如长度、周长、面积、角度等问题,最后都转化到三角形中解决.古人对任意形状的三角形,探究出若已知三边,便可以求出其面积.具体如下:设一个三角形的三边长分别为a、b、c,P(a+b+c),则有下列面积公式:S(海伦公式);S(秦九韶公式).(1)一个三角形边长依次为5、6、7,利用两个公式,可以求出这个三角形的面积是 .(2)学完勾股定理以后,已知任意形状的三角形的三边长也可以求出其面积.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.①作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD= ;②请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;③利用勾股定理求出AD的长,再计算三角形的面积.24.(2022春•章贡区期末)小明家装修,电视背景墙长BC为m,宽AB为m,中间要镶一个长为2m,宽为m的大理石图案(图中阴影部分).除去大理石图案部分,其他部分贴壁布,求壁布的面积.(结果化为最简二次根式)25.(2021秋•长安区校级期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为1米,宽为1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)26.(2020春•玄武区期中)数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S,其中p(a+b+c),这个公式称为“海伦公式”.数学应用:如图,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AC边上的高为h1,BC边上的高h2,求h1+h2的值.27.(2022春•磁县期中)如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD和正方形ECFG的边长;(2)求阴影部分的面积.28.(2022春•丰台区期中)在数学课上,老师说统计学中常用的平均数不是只有算术平均数一种,好学的小聪通过网络搜索,又得到了两种平均数的定义,他把三种平均数的定义整理如下:对于两个数a,b,称为a,b这两个数的算术平均数,称为a,b这两个数的几何平均数,称为a,b这两个数的平方平均数.小聪根据上述定义,探究了一些问题,下面是他的探究过程,请你补充完整:(1)若a=﹣1,b=﹣2,则M= ,N= ,P= ;(2)小聪发现当a,b两数异号时,在实数范围内N没有意义,所以决定只研究当a,b都是正数时这三种平均数的大小关系.结合乘法公式和勾股定理的学习经验,他选择构造几何图形,用面积法解决问题:如图,画出边长为a+b的正方形和它的两条对角线,则图1中阴影部分的面积可以表示N2.①请分别在图2,图3中用阴影标出一个面积为M2,P2的图形;②借助图形可知当a,b都是正数时,M,N,P的大小关系是 .(把M,N,P从小到大排列,并用“<”或“≤”号连接).29.(2022春•南部县校级月考)在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(1208年﹣1261年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元62年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前287年﹣公元前212年)得出的,故我国称这个公式为海伦﹣秦九韶公式.它的表述为:三角形三边长分别为a、b、c,则三角形的面积.(公式里的p为半周长即周长的一半)请利用海伦﹣秦九韶公式解决以下问题:(1)三边长分别为3、6、7的三角形面积为 .(2)四边形ABCD中,AB=3,BC=4,CD=7,AD=6,∠B=90°,四边形ABCD的面积为 .(3)五边形ABCDE中,AB=BC,CD=6,DE=8,AE=12,∠B=120°,∠D=90°,求出五边形ABCDE的面积.30.(2022春•岳麓区校级期中)已知a,b均为正整数.我们把满足的点P(x,y)称为幸福点.(1)下列四个点中为幸福点的是 ;P1(5,5);P2(6,6);P3(7,7);P4(8,8)(2)若点P(20,t)是一个幸福点,求t的值;(3)已知点P(1,1)是一个幸福点,则存在正整数a,b满足,试问是否存在实数k的值使得点P和点Q(a+k,b﹣k)到x轴的距离相等,且到y轴的距离也相等?若存在,求出k的值;若不存在,请说明理由.
相关试卷
这是一份人教版数学七下培优提升训练专题7.5平面直角坐标系及应用大题提升训练(解析版),文件包含人教版数学七下培优提升训练专题75平面直角坐标系及应用大题提升训练原卷版doc、人教版数学七下培优提升训练专题75平面直角坐标系及应用大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份人教版数学七下培优提升训练专题6.8实数的应用大题提升训练(2份,原卷版+解析版),文件包含人教版数学七下培优提升训练专题68实数的应用大题提升训练原卷版doc、人教版数学七下培优提升训练专题68实数的应用大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份初中数学人教版八年级下册16.1 二次根式当堂达标检测题,共26页。