数学八年级下册18.2.2 菱形精品课时作业
展开2023年人教版数学八年级下册
《菱形的性质与判定》专项练习
一 、选择题
1.菱形的周长为20cm,它的一条对角线长为6cm,则其面积为( )cm2.
A.6 B.12 C.18 D.24
2.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为( )
A.12m B.20m C.22m D.24m
3.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形面积是( )
A.16 B.16 C.8 D.8
4.求证:菱形的两条对角线互相垂直.
已知:如图所示,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC⊥BD.
以下是打乱的证明过程:
①∵BO=DO,
②∴AO是BD的垂直平分线,即AC⊥BD.
③∵四边形ABCD是菱形,
④∴AB=AD.
证明步骤正确的顺序是( )
A.①→③→④→②
B.③→②→①→④
C.③→④→①→②
D.③→④→②→①
5.如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )
A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC
6.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于( )
A.2 B.1.6 C.1.8 D.2.4
7.如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B.2 C.2 D.4
8.用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N值不可能是( )
A.360° B.540° C.630° D.720°
9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1 B.2 C.3 D.4
10.四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
11.如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形 ENCM 的面积之比为( )
A.9:4 B.12:5 C.3:1 D.5:2
12.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论:
①△ABF≌△CAE;②∠AHC=120°;③AH+CH=DH中.正确的是( )
A.①② B.①③ C.②③ D.①②③
二 、填空题
13.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD的面积为 .
14.如图,在给定的一张平行四边形纸片上做一个菱形,甲、乙两人的作法如下:
甲:连接AC,做AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断正确的是 .
15.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.
给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.
从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________(填序号).
16.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .
17.如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG面积为________.
18.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上一点,且AD=3AM,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度最小值是 .
三 、解答题
19.如图,BD是菱形ABCD的对角线,∠CBD=75°,
(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;
(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
20.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.
(1)求菱形ABCD的周长;
(2)若AC=2,求BD的长.
21.如图,在△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作与DE∥AB,DE与AC、AE分别交于点O、E,连接EC.
(1)求证:AD=EC;
(2)当△ABC满足 时,四边形ADCE是菱形.
22.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于点F,交BC于点E,过点E作EG⊥AB于G,连结GF.求证:四边形CFGE是菱形.
23.如图,已知四边形ABCD为矩形,AD=20cm、AB=10cm.M点从D到A,P点从B到C,两点的速度都为2cm/s;N点从A到B,Q点从C到D,两点的速度都为1cm/s.若四个点同时出发.
(1)判断四边形MNPQ的形状.
(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由.
24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.
(1)求证:四边形CEFG是菱形;
(2)若AB=6,AD=10,求四边形CEFG的面积.
25.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
北师大版九年级数学上册基础知识专项讲练 专题1.4 菱形的性质与判定(拓展篇)(专项练习): 这是一份北师大版九年级数学上册基础知识专项讲练 专题1.4 菱形的性质与判定(拓展篇)(专项练习),共54页。试卷主要包含了单选题,折叠中的菱形问题,菱形的最值问题,菱形的旋转问题等内容,欢迎下载使用。
北师大版九年级数学上册基础知识专项讲练 专题1.3 菱形的性质与判定(巩固篇)(专项练习): 这是一份北师大版九年级数学上册基础知识专项讲练 专题1.3 菱形的性质与判定(巩固篇)(专项练习),共58页。试卷主要包含了单选题,利用菱形的性质求线段,利用菱形的性质求面积,利用菱形的性质证明,添加一个条件证明四边形是菱形,证明已知四边形是菱形,用菱形的性质与判定求角度,用菱形的性质与判定求面积等内容,欢迎下载使用。
初中数学北师大版九年级上册1 菱形的性质与判定课时训练: 这是一份初中数学北师大版九年级上册1 菱形的性质与判定课时训练,共23页。试卷主要包含了已知等内容,欢迎下载使用。