所属成套资源:苏教版数学必修第一册PPT课件全套
第2章-2.2 充分条件、必要条件、充要条件(课件PPT)
展开
这是一份第2章-2.2 充分条件、必要条件、充要条件(课件PPT),共23页。
第2章2.2充分条件、必要条件、充要条件1.理解充分条件、必要条件、充要条件的含义与意义.2.结合具体命题掌握充分条件、必要条件、充要条件的判定和证明.3.理解性质定理与必要条件的关系,理解判定定理与充分条件的关系,理解数学定义与充要条件的关系.核心素养:数学抽象、逻辑推理、数学运算 2.充分条件与必要条件一般地,如果“pq”,那么称p是q的充分条件,也称q是p的必要条件.【概念剖析】(1)对充分条件的理解:①所谓充分,就是条件是充分的,条件是充足的,条件是足够的,条件是足以保证的,即“有之必成立,无之未必不成立”.②充分条件不是唯一的,如“x>2”“x>3”都是“x>0”的充分条件.(2)对必要条件的理解:①所谓必要,就是条件是必须要有的,必不可少的,缺其不可,即“有之未必成立,无之必不成立”.②必要条件不是唯一的,如“x>0”“x>5”等都是“x>9”的必要条件.【知识拓展】充分条件与必要条件的两个特征①对称性:若p是q的充分条件,则q是p的必要条件,即“pq”,则“qp”.②传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“pq且qr”,则“pr”(或“pq且qr”,则“pr”).示例 指出下列所给的p,q中,p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p:m0,y>0,q:xy>0;③ p:a>b,q:a+c>b+c. ①③ 三、判定定理、性质定理与充分条件、必要条件的关系(1)性质定理具有“必要性”一般地,数学的每一条性质定理都给出了对应数学结论成立的一个必要条件.如:全等三角形的对应角相等(若两个三角形是全等三角形,则这两个三角形的对应角相等).(2)判定定理具有“充分性”一般地,数学的每一条判定定理都给出了对应数学结论成立的一个充分条件.如:两组对角相等的四边形是平行四边形(若四边形是平行四边形,则四边形的两组对角相等).(3)数学定义具有“充分必要性”一个数学对象的定义实质上是给出了这个对象的一个充要条件.如:三条边相等的三角形是等边三角形(三角形的三条边相等三角形是等边三角形).四、从集合的角度看充分条件、必要条件 如果把p研究的范围看成集合A,把q研究的范围看成集合B,则可得下表.【巧记】对具体的数集,以条件集合为基础,小充分,大必要.【示例】已知p:x≤-1或x≥3,q:x>5,则p是q的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【解析】由{x|x>5}是{x|x≤-1或x≥3}的真子集,可知p是q的必要不充分条件. B一、充分条件、必要条件、充要条件的判断1.利用定义进行判断例 1 设a,b∈R,则“a|b|”是“a>b”的既不充分也不必要条件【方法技巧】对于选择题或填空题,可以取一些特殊值或特殊情况,用来说明由条件(结论)不能推出结论(条件),但是这种方法不适用于证明题.【解析】对于A,当a=-5,b=1时,满足a2>b2,但是ab,但是a2bc2得c≠0,则有a>b成立,即充分性成立,故C正确.对于D,当a=-5,b=1时,|a|>|b|成立,但是ab,但是|a|b”是“a2>b2”的充分条件C.“a