终身会员
搜索
    上传资料 赚现金
    2023湖南师大附中高三上学期月考卷(二)数学含解析
    立即下载
    加入资料篮
    2023湖南师大附中高三上学期月考卷(二)数学含解析01
    2023湖南师大附中高三上学期月考卷(二)数学含解析02
    2023湖南师大附中高三上学期月考卷(二)数学含解析03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023湖南师大附中高三上学期月考卷(二)数学含解析

    展开
    这是一份2023湖南师大附中高三上学期月考卷(二)数学含解析,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南师大附中2023届高三月考试卷(二)

     

    I卷

    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 若以集合的四个元素为边长构成一个四边形, 则这个四边形可能是

    A. 梯形 B. 平行四边形 C. 菱形 D. 矩形

    2. 在复平面内, 复数所对应的点的坐标为(1,-1), 则

    A. 2     B.      C.      D.

    3. 设点不共线, 则“的夹角是锐角”是“”的

    A. 充分而不必要条件       B. 必要而不充分条件

    C. 充分必要条件        D. 既不充分也不必要条件

    4. 函数的图象大致形状为

    5. 圆内接四边形中,是圆的直径, 则等于

    A. 12     B. -12     C. 20     D. -20

    6. 在三棱锥中,底面, 底面是边长为的正三角形,的中点, 球是三棱锥的外接球, 若是球上一点, 则三棱锥的体积的最大值是

    A. 2     B.     C.     D.


    7. 函数, 已知图象的一个对称中心, 直线 图象的一条对称轴, 且上单调递减. 记满足条件的所有的值的和为, 则的值为

    A.      B.      C.      D.

    8.古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;时,轨迹为双曲线:现有方程表示的曲线是双曲线,则的取值范围为

    A.     B.     C.     D.

    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.

    9. 已知数列满足, 则下列结论中正确的是

    A.           B. 为等比数列

    C.      D.

    10. 已知是两个随机事件,, 下列命题正确的是

    A. 若相互独立,

    B. 若事件, 则

    C. 若是对立事件, 则

    D. 若是互斥事件, 则

    11. 已知, 下列结论正确的是


    A.

    B. 当时, 设, 则

    C. 当时,中最大的是

    D. 当时,

    12. 已知定义在上的函数满足: 当时,, 且当时, , 则下列说法正确的是

    A.

    B. 上单调递减

    C. 若, 则

    D. 若在区间(0,2)内的两个零点,且,则

    三、填空题: 本题共 4 小题,每小题 5 分, 共 20 分.

    13. 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑和冰壶3 个项目进行培训,每名志愿者只分配到 1 个项目,每个项目至少分配1名志愿者, 则不同的分配方案共有_____种.

    14. 已知抛物线的焦点为,过的直线与抛物线相交于两点,分别过两点作的切线,且相交于点,则面积的最小值为_____.

    15. 已知四面体的各条棱长都为 2 ,其顶点都在球的表面上,点满足,过点作平面,则平面截球所得截面面积的取值范围是_____.

    16. 已知函数的图象关于点对称,且, 若上没有最大值, 则实数的取值范围是 _____.

    四、解答题: 本题共 6 小题, 共 70 分. 解答应写出文字说明、证明过程或演算步骤.

    17. (本小题满分 12 分)

    的内角的对边分别为, 已知.

    (1)求;

    (2)若, 证明:是直角三角形.18. (本小题满分 12 分)

    己知数列中,是数列的前项和, 且.

    (1) 求, 并求数列的通项公式;

    (2) 设, 数列的前项和为, 若对任意的正整数都成立, 求实数 的取值范围.

    19. (本小题满分 12 分)

    如图, 在四棱锥中, 底面为直角梯形, 其中,平面, 且, 点在棱上, 点中点.

    (1)证明: 若, 直线平面;

    (2)求二面角的正弦值;

    (3)是否存在点, 使与平面所成角的正弦值为? 若存在求出值; 若不存在,说明理由.

    20. (本小题满分 12 分)

    为了检测某种抗病毒疫苗的免疫效果, 需要进行动物与人体试验.研究人员将疫苗注射到 200 只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60 的有110只.

    假设小白鼠注射疫苗后是否产生抗体相互独立.


    (1)填写下面的列联表,并根据列联表及的独立性检,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60 有关.

    单位:只

    抗体

    指标值

    合计

    小于60

    不小于60

    有抗体

     

     

     

    没有抗体

     

     

     

    合计

     

     

     

    (2)为检验疫苗二次接种的免疫抗体性,对第次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.

    ( i )用频率估计概率,求只小白鼠注射2次疫苗后产生抗体的概率;

    ()以(i)中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记个人注射2次疫苗后产生抗体的数量为随机变量. 试验后统计数据显示, 当时,取最大值, 求参加人体接种试验的人数.

    参考公式: (其中为样本容量).

    0.50

    0.40

    0.25

    0.15

    0.100

    0.050

    0.025

    0.455

    0.708

    1.323

    2.072

    2.706

    3.841

    5.024

    21. (本小题满分 12 分)

    已知, 直线的斜率之积为, 记动点的轨迹为曲线.

    (1)求的方程;

    (2) 直线与曲线交于两点,为坐标原点, 若直线的斜率之积为, 证明: 的面积为定值.

    22. (本小题满分 12 分)

    已知函数.


    (1) 求证: 当时,;

    (2) 已知函数有 3 个不同的零点.

    (i) 求证:;

    () 求证:(是自然对数的底数).

    湖南师大附中2023届高三月考试卷(二)

    数学参考答案

    题号

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    A

    A

    C

    A

    B

    C

    A

    C

    AD

    ABD

    AD

    ACD

    13. 150

    14. 16

    15.

    16.

    17.【解析】(1)因为,所以

    解得,又

    所以

    (2)因为,所以

    ①,

    ②, 将②代入①得,

    ,而,解得

    所以


    是直角三角形.

    18.【解析】(1)在中,

    ,则,即,得

    得:

    时,

    化简得

    所以数列是以2为首项,2为公比的等差数列,

    所以.

    又因为,所以

    所以.

    时,

    也成立,

    所以数列的通项公式为.

    (2)因为

    所以

    .

    因为

    所以上单调递增,

    所以的最小值为.

    因为对任意的正整数都成立,

    所以

    .

    所以实数的取值范围是.


    19.【解析】(1)

    如图所示,在线段上取一点,使,连接

    ,四边形为平行四边形,

    所以平面平面

    平面

    平面

    (2)

    如图所示,以点为坐标原点,以轴,轴,轴建立空间直角坐标系,

    中点,则

    所以


    设平面的法向量

    ,令,则

    设平面的法向量

    ,令,则

    所以

    则二面角的正弦值为

    (3)

    存在,

    假设存在点,设,即

    由(2)得,且平面的法向量

    解得

    故存在点,此时.

    20.【解析】(1)由频率分布直方图,知200只小白鼠按指标值分布为:

    内有(只);在内有(只);

    内有(只);在内有(只);

    内有(只).

    由题意,有抗体且指标值小于60的有50只:而指标值小于60的小白鼠共有只,所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:


    抗体

    指标值

    合计

    小于60

    不小于60

    有抗体

    50

    110

    160

    没有抗体

    20

    20

    40

    合计

    70

    130

    200

     

    零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.

    根据列联表中数据,得

    根据的独立性检验,推断不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05;

    (2)

    ①令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”,

    记事件ABC发生的概率分别为

    所以一只小白鼠注射2次疫苗后产生抗体的概率为0.9.

    ②由题意,知随机变量,

    因为最大,

    所以由可得

    解得,因n是整数,故

    所以接受接种试验的人数为109或110,

    当接种人数为109时,

    当接种人数为110时,

    21.【解析】(1)设,则直线的斜率,直线的斜率 ,由题意


    化简得

    (2)

    直线的斜率存在时,可设其方程为

    联立化简得

    所以

    化简得

    的距离

    所以,为定值.

    当直线的斜率不存在时,可设

    ,且,解得,此时

    综上,的面积为定值.

    22.【解析】(1)

    ①当 ,即证

    ,则当,所以上单调递减,

    则有当,所以上单调递减,

    所以当


    成立

    ②当 时,,即证

    ,则,所以上单调递增,所以

    所以

    上单调递减,,即

    综合①②当 时,

    (2)

    上单调递增,在 单调递减,

    上单调递增,

    又函数有 3 个不同的零点

    所以

    (i)令

    上单调递增,又

    上单调递减,

    ,即

    (ii)处的切线方程交点的横坐标

    过点 的直线方程 交点的横坐标


    由 (1)取

    轴右侧交点横坐标为

    综上:

     

     

     

    相关试卷

    2024湖南师大附中高三上学期月考卷(四)数学试卷含解析: 这是一份2024湖南师大附中高三上学期月考卷(四)数学试卷含解析,文件包含婀栧崡甯堣寖澶у闄勫睘涓2023-2024瀛﹀勾楂樹笁涓婂鏈熸湀鑰冨嵎锛堝洓锛夋暟瀛﹁瘯棰橈紙瑙f瀽鐗堬級docx、婀栧崡甯堣寖澶у闄勫睘涓2023-2024瀛﹀勾楂樹笁涓婂鏈熸湀鑰冨嵎锛堝洓锛夋暟瀛﹁瘯棰橈紙鍘熷嵎鐗堬級docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    2024湖南师大附中高三上学期月考卷(一)数学PDF版含解析: 这是一份2024湖南师大附中高三上学期月考卷(一)数学PDF版含解析,文件包含湖南师范大学附属中学2023-2024学年高三上学期月考卷一数学pdf、湖南师范大学附属中学2023-2024学年高三上学期月考卷一数学答案和解析pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    2023长沙师大附中高三上学期月考卷(五)数学含解析: 这是一份2023长沙师大附中高三上学期月考卷(五)数学含解析,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023湖南师大附中高三上学期月考卷(二)数学含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map