泰安市泰安英雄山中学2023年九年级第二学期第一次次模拟考试试题和答案
展开
这是一份泰安市泰安英雄山中学2023年九年级第二学期第一次次模拟考试试题和答案,共14页。试卷主要包含了03)等内容,欢迎下载使用。
2022-2023学年九年级数学模拟考试数学试题(2023.03)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题纸和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1.﹣2的绝对值是( )A.﹣2 B.1 C.2 D.2.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A. B. C. D.3.下列计算正确的是( )A. B. C. D.4.某运动会颁奖台如图所示,它的主视图是( )A. B. C. D.5.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.300 B.300 C.300 D.300 6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是( )A. B. C. D.7.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是( )A.﹣10 B.﹣12 C.﹣16 D.﹣188.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25° B.27.5° C.30° D.35°9.函数y=ax2+bx+a+b(a≠0)的图象可能是( )A. B. C. D.10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,AC的长为( )A.2cm B.4cm C.2cm或4cm D.2cm或4cm11.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,正确结论的个数共有( )A.1个 B.2个 C.3个 D.4个12.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )A. B. C. D.二、填空题(本大题共6个小题,每小题4分,24分,将答案填在答题卡对应的题号后的横线上)13.关于x的方程(m-2)x2+2x+1=0有实数根,则偶数m的最大值为 _____.14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为 .15.在综合实践课上,小聪所在的小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿着河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其它同学测得CD=10米.请根据这些数据求出河的宽度________米(结果保留根号)16.如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为 (结果保留π).17.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论是 .18.如图,将△ABC沿着过BC的中点D的直线折叠,使点B落在AC边上的B1处,称为第一次操作,折痕DE到AC的距离为h1;还原纸片后,再将△BDE沿着过BD的中点D1的直线折叠,使点B落在DE边上的B2处,称为第二次操作,折痕D1E1到AC的距离记为h2;按上述方法不断操作下去……经过第n次操作后得到折痕Dn-1En-1,到AC的距离记为hn.若h1=1,则hn的值为 三、解答题(本大题共7小题,共78分,解答写出文字说明、证明过程或推演步骤)19.计算①解不等式组:②先化简,再求值:,其中.20.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集. 21.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有_________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为_________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.22.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量(件)与每件的售价(元)满足一次函数关系,部分数据如下表:售价(元/件)606570销售量(件)140013001200(1)求出与之间的函数表达式;(不需要求自变量的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?23.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.24.如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求面积的最大值.(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标. 2023学初中学业水平模拟考试九年级数学参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可;2.若考生的解法与给出的解法不同,正确者相应给分;一、选择题(本大题共12个小题,每小题4分,共48分.)题号123456789101112答案CBDCBBBD CCDC二、填空题(本大题共6个小题,每小题4分,共24分。)13. 2 14. 15. 10(3+) 16. 4π ,17. ①②④ 18.三、解答题(本大题共7小题,共78分,解答写出文字说明、证明过程或推演步骤19.计算(10分)①解不等式组:,由①得:x≥2,由②得:x<4,∴不等式组的解为:2≤x<4;②原式===,当时,原式=.20.(12分)解:(1)由已知,OA=6,OB=12,OD=4 ∵CD⊥x轴∴OB∥CD ∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<021.(10分)解:(1)54÷30%=180(人)故答案为:180;(2)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:,故答案为:126°; (3)画树状图如下:
由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.
所以P(恰好选中甲、乙两位同学)=.22.解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),把x=60,y=1400和x=65,y=1300代入解析式得,, 解得,,∴与之间的函数表达式为;(2)设该种衬衫售价为x元,根据题意得,(x-50)(-20x+2600)=24000解得,,,∵批发商场想尽量给客户实惠,∴,故这种衬衫定价为每件70元;(3)设售价定为x元,则有: = ∵ ∴ ∵k=-20<0,∴w有最大值,即当x=65时,w的最大值为-20(65-90)2+32000=19500(元).所以,售价定为65元可获得最大利润,最大利润是19500元.23解:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.24.解:(1)函数的表达式为:,将点D坐标代入上式并解得:,故抛物线的表达式为:…①;(2)设直线PD与y轴交于点G,设点,将点P、D的坐标代入一次函数表达式:并解得,直线PD的表达式为:,则,,∵,故有最大值,当时,其最大值为;(3)∵,∴,∵,故与相似时,分为两种情况:①当时,,,,过点A作AH⊥BC与点H,,解得:,∴CH=则,则直线OQ的表达式为:…②,联立①②并解得:,故点或;②时,,则直线OQ的表达式为:…③,联立①③并解得:,故点或;综上,点或或或.25.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4.
相关试卷
这是一份泰安市新泰市第二实验中学2023年九年级第二学期第一次模拟考试试题和答案,共22页。试卷主要包含了1×108,等内容,欢迎下载使用。
这是一份泰安市泰安英雄山中学2022-2023年八年级第一学期期末考试试题和答案,共9页。试卷主要包含了下列各式,多项式可提出的公因式是,当分式的值为零时,x的值为等内容,欢迎下载使用。
这是一份泰安市泰安第六中学中学2023年九年级第二学期第一次次模拟考试试题和答案,共16页。试卷主要包含了03),图中几何体的三视图是等内容,欢迎下载使用。