所属成套资源:2023年中考数学二轮复习 强化练习(含答案)
2023年中考数学二轮复习《几何图形》强化练习(含答案)
展开
这是一份2023年中考数学二轮复习《几何图形》强化练习(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学二轮复习《几何图形》强化练习一 、选择题1.如图是由长方体和圆柱组成的几何体,它的俯视图是( ) 2.如图,AB∥CD,若∠2是∠1的4倍,则∠2的度数是( ).A.144° B.135° C.126° D.108°3.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450 B.550 C.650 D.7504.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙5.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米 B.120米 C.140米 D.150米6.已知四边形ABCD是平行四边形,再从:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )A.选①② B.选②③ C.选①③ D.选②④7.如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )A.2 B.2 C.2 D.8.如图,已知D是△ABC(三边互不相等)的边AC上的一点,过D点画线段DE,使点E在△ABC的边上,并且点D、E和△ABC的一个顶点组成的小三角形与ABC相似,则这样的画法有( )A.5种 B.4种 C.3种 D.2种 9.如图,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为( )A.2 m B.2 m C.(2﹣2)m D.(2﹣2)m 10.如图,在半径为13cm圆形铁片上切下一块高为8cm弓形铁片,则弓形弦AB长为( )A.10cm B.16cm C.24cm D.26cm11.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )A.π﹣2 B.π﹣ C.π﹣2 D.π﹣12.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q.给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是( )A.1 B.2 C.3 D.4二 、填空题13.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=________.14.如图,若点A的坐标为(1,),则∠1=________.15.如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为 .16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_______cm.17.如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是 .18.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F.给出下列四个结论:①AE=CF;②△EPF是等腰直角三角形;③EF=AB;④S四边形AEPF=S△ABC,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合).上述结论中始终正确的有________(把你认为正确的结论的序号都填上).三 、解答题19.小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米? 20.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少? 21.在正方形ABCD中,点E在CD边上,AE的垂直平分线分别交AD、CB于F、G两点,垂足为点H.(1)如图1,求证:AE=FG;(2)如图2,若AB=9,DE=3,求HG的长. 22.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7) 23.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC? 24.如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.
参考答案1.A2.A3.D.4.B5.C6.B7.A8.B.9.B10.C.11.C.12.C.13.答案为:18.14.答案为:60°15.答案为:.16.答案为:1或2.17.答案为:8﹣8.18.答案为:①②④19.解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:楼高AB是26米.20.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,即BC=CA,设AC为x,则OC=45﹣x,由勾股定理可知OB2+OC2=BC2,又∵OA=45,OB=15,把它代入关系式152+(45﹣x)2=x2,解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.21.证明:(1)过D点作DN∥FG交BC于点N,交AE于点M在正方形ABCD中,AD∥BC,AD=DC,∠ADC=∠C=90°,则四边形FGND是平行四边形,∴DN=FG,∵FG垂直平分AE,∴∠FHA=90°∵DN∥FG,∴∠DMA=∠FHA=90°,∴∠NDE+∠AED=90°,又∵∠DAE+∠AED=90°,∴∠NDE=∠DAE,在△DNC和△AED中,,∴△DNC≌△AED(ASA),∴DN=AE,∴AE=FG;(2)解:在正方形ABCD中,∠D=90°,AD=9,DE=3在Rt△ADE中,AE=3,tan∠DAE==,∴在Rt△AHF中,tan∠FAH==,点H为AE中点,AH=HE=AE=,∴FH=AH=,∴HG=FG﹣FH=3﹣=.22.解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,则AC+BC﹣AB=20+10﹣10﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.23.解:(1)证明:∵四边形ABCD是矩形,∴AB∥CD.∴∠APQ=∠CDQ.又∵∠AQP=∠CQD,∴△APQ∽△CDQ.(2)当t=5时,DP⊥AC.理由:∵t=5,∴AP=5.∴=.又∵=,∴=.又∵∠PAD=∠ADC=90°,∴△PAD∽△ADC.∴∠ADP=∠DCA.∵∠ADP+∠CDP=∠ADC=90°,∴∠DCA+∠CDP=90°.∴∠DQC=90°,即DP⊥AC.24. (1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF=.
相关试卷
这是一份2023年中考数学二轮复习《最值问题》强化练习(含答案),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《图形的折叠问题》强化练习(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《实数》强化练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。