所属成套资源:2023年中考数学二轮复习 强化练习(含答案)
2023年中考数学二轮复习《图形的旋转综合题》强化练习(含答案)
展开
这是一份2023年中考数学二轮复习《图形的旋转综合题》强化练习(含答案),共33页。试卷主要包含了我们定义,新定义,在正方形ABCD中,连接BD.等内容,欢迎下载使用。
2023年中考数学二轮复习
《图形的旋转综合题》强化练习
1.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
2.已知,如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点
(1)写出线段FD与线段FC的关系并证明;
(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;
(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.
3.如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当C,B两点均在直线MN的上方时,
①直接写出线段AE,BF与CE的数量关系.
②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.
4.我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
5.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
(1)线段BE与AF的位置关系是 ,AF:BE= .
(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.[来源:学|科|网]
6.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
7.新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
【特例感知】(1)①若△ABC是等边三角形(如图2),BC=4,则AD= ;
②若∠BAC=90°(如图3),BC=6,AD= ;
【猜想论证】(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
【拓展应用】(3)如图4.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
8.在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
9.如图1,在Rt△OAB中,∠AOB=90°,OA=OB,D为OB边上一点,过D点作DC⊥AB交AB于C,连接AD,E为AD的中点,连接OE、CE.
观察猜想
(1)①OE与CE的数量关系是 ;②∠OEC与∠OAB的数量关系是 ;
类比探究
(2)将图1中△BCD绕点B逆时针旋转45°,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
拓展迁移
(3)将△BCD绕点B旋转任意角度,若BD=,OB=3,请直接写出点O、C、B在同一条直线上时OE的长.
10.我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
11.如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.
请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
①∠BEP= °;
②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
12.如图1,△ABC和△ADE都是等边三角形,将△ADE绕点A旋转.
(1)求证:BD=CE;
(2)若∠ADB=90°,DE的延长线交BC于点F,交AB于点G.
①如图2,求证:点F是BC中点.
②如图3,若DA=DB,BF=2,直接写出AG的长为6-2√3.
13.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.
14.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
(1)如图1,猜想∠QEP= °;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
参考答案
1.解:(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,[来源:Zxxk.Com]
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(2)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O=,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°,即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°﹣30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=2OD,
∴OG′=OG=,
∴OF′=2,
∴AF′=AO+OF′=+2,
∵∠COE′=45°,
∴此时α=315°.
2.解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,
∵∠ADE=∠ACE=90°,AF=FE,
∴DF=AF=EF=CF,
∴∠FAD=∠FDA,∠FAC=∠FCA,
∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,
∵CA=CB,∠ACB=90°,
∴∠BAC=45°,
∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,
∴DF=FC,DF⊥FC.
(2)结论不变.
理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.
∵BC⊥AM,AC=CM,
∴BA=BM,同法BE=BN,
∵∠ABM=∠EBN=90°,
∴∠NBA=∠EBM,
∴△ABN≌△MBE,
∴AN=EM,∴∠BAN=∠BME,
∵AF=FE,AC=CM,
∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,
∴FD=FC,
∵∠BME+∠BOM=90°,∠BOM=∠AOH,
∴∠BAN+∠AOH=90°,
∴∠AHO=90°,
∴AN⊥MH,FD⊥FC.
(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3.
如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.
综上所述,≤BF≤3.
3. (1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,
∵CE⊥MN,CD⊥BF,
∴∠CEA=∠D=90°,
∵CE⊥MN,CD⊥BF,BF⊥MN,
∴四边形CEFD为矩形,
∴∠ECD=90°,
又∵∠ACB=90°,
∴∠ACB﹣∠ECB=∠ECD﹣∠ECB,即∠ACE=∠BCD,
又∵△ABC为等腰直角三角形,
∴AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(AAS),
∴AE=BD,CE=CD,
又∵四边形CEFD为矩形,
∴四边形CEFD为正方形,
∴CE=EF=DF=CD,
∴AE+BF=DB+BF=DF=EC.
②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,
(2)AF﹣BF=2CE,图2中,过点C作CG⊥BF,交BF延长线于点G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF﹣BF=2CE;
(3)如图3,过点C做CD⊥BF,交FB的于点D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE﹣EF,
∴AF=BD﹣CE=BF﹣FD﹣CE=BF﹣2CE,
∴BF﹣AF=2CE.
∵AF=3,BF=7,
∴CE=EF=2,AE=AF+EF=5,
∵FG∥EC,
∴=,∴=,
∴FG=.
4.解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,故答案为.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,故答案为4.
(2)结论:AD=BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠MB′A,∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴AD=BC.
5.解:(1)如图1,线段BE与AF的位置关系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵点E,F分别是线段BC,AC的中点,
∴=;
故答案为:互相垂直;;
(2)(1)中结论仍然成立.
证明:如图2,∵点E,F分别是线段BC,AC的中点,
∴EC=BC,FC=AC,
∴==,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴===,
∴∠1=∠2,
延长BE交AC于点O,交AF于点M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;
(3)如图3,∵∠ACB=90°,BC=2,∠A=30°
∴AB=4,∠B=60°
过点D作DH⊥BC于H
∴DB=4﹣(6﹣2)=2﹣2,
∴BH=﹣1,DH=3﹣,
又∵CH=2﹣(﹣1)=3﹣,
∴CH=DH,
∴∠HCD=45°,
∴∠DCA=45°,
∴α=180°﹣45°=135°.
6.解:(1)∵AB=AC,∠A=α,
∴∠ABC=∠ACB,∠ABC+∠ACB=180°﹣∠A,
∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,
∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,
即∠ABD=30°﹣α;
(2)△ABE是等边三角形,
证明:连接AD,CD,ED,
∵线段BC绕B逆时针旋转60°得到线段BD,
则BC=BD,∠DBC=60°,
∵∠ABE=60°,
∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,
在△ABD与△ACD中
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD=∠BAC=α,
∵∠BCE=150°,
∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,
在△ABD和△EBC中
∴△ABD≌△EBC(AAS),
∴AB=BE,
∴△ABE是等边三角形;
(3)解:∵∠BCD=60°,∠BCE=150°,
∴∠DCE=150°﹣60°=90°,
∵∠DEC=45°,
∴△DEC为等腰直角三角形,
∴DC=CE=BC,
∵∠BCE=150°,
∴∠EBC=(180°﹣150°)=15°,
∵∠EBC=30°﹣α=15°,
∴α=30°.
7.解:(1)①∵△ABC是等边三角形,BC=4,
∴AB=AC=4,∠BAC=60,
∴AB′=AC′=4,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,[来源:学科网ZXXK]
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=4,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,
,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′E=180°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,
,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图4中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF=4,
∴BC=2BF=8.
8.解:(1)∵BD是正方形ABCD的对角线,
∴∠ABD=∠ADB=45°,
∵AE⊥BD,
∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,
②BM、DN和MN之间的数量关系是BM2+MD2=MN2,
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,
∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,
∵旋转△ANE得到AB1E1,
∴∠E1AB1=45°,
∴∠BAB1+∠DAN=90°﹣45°=45°,
∵∠BAF=DAN,
∴∠BAB1+∠BAF=45°,
∴∠FAM=45°,
∴∠FAM=∠E1AB1,
∵AM=AM,AF=AN,
∴△AFM≌△ANM,
∴FM=MN,
∵FB2+BM2=FM2,
∴DN2+BM2=MN2,
(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,
∴DF=GB,
∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,
∵△CEF周长是正方形ABCD周长的一半,
∴4AB=2(EF+EC+CF),
∴2AB=EF+EC+CF
∵EC=AB﹣BE,CF=AB﹣DF,
∴2AB=EF+AB﹣BE+AB﹣DF,
∴EF=DF+BE,
∵DF=GB,
∴EF=GB+BE=GE,由旋转得到AD=AG=AB,
∵AM=AM,
∴△AEG≌△AEF,∠EAG=∠EAF=45°,
和(2)的②一样,得到DN2+BM2=MN2.
9.解:(1)①如图1中,
∵CD⊥AB,
∴∠ACD=90°,
∵∠AOD=90°,AE=DE,
∴OE=AD,EC=AD,
∴OE=EC.
②∵EO=EA,EC=EA,
∴∠EAO=∠EOA,∠EAC=∠ECA,
∵∠OED=∠EAO+∠EOA=2∠EAO,∠DEC=∠EAC+∠ECA=2∠EAC,
∵OA=OB,∠AOB=90°,
∴∠OAB=45°,
∴∠OEC=2(∠OAE+∠EAC)=90°,
∴∠OEC=2∠OAB,
故答案为OE=EC,∠OEC=2∠OAB.
(2)结论成立.
理由:如图2中,延长OE到H,使得EH=OE,连接DH,CH,OC.
由题意△AOB,△BCD都是等腰直角三角形,
∴∠A=∠ABO=∠DBC=∠CDB=45°,
∵AE=ED,∠AEO=∠DEH,OE=EH,
∴△AEO≌△DEH(SAS),
∴AO=DH,∠A=∠EDH=45°,
∴∠CDH=∠OBC=90°,
∵OA=OB,BC=CD,
∴DH=OB,
∴△HDC≌△OBC(SAS),
∴CH=OC,∠HCD=∠OCB,
∴∠HCO=∠DCB=90°,
∴∠COE=∠CHE=45°,
∵OE=EH,
∴CE⊥OE,
∴∠OEC=90°,
∴∠OEC=2∠OAB,OE=EC.
(3)①如图3﹣1中,当点C落在OB上时,连接EC.
由(1)(2)可知△OEC是等腰直角三角形,
∵BC=BD=1,OB=3,∴OC=OB﹣BC=3﹣1=2,∴OE=OC=.
②如图3﹣2中,当点C落在OB的延长线上时,连接EC.
同法可得OE=OC=(3+1)=2,
综上所述,OE的长为或2.
10.解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为2AD=BC;
理由:∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,
故答案为0.5.
②如图3,当∠BAC=90°,BC=8时,则AD长为4.
理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,
故答案为4.
(2)猜想.
证明:如图,延长AD至点Q,则△DQB'≌△DAC',
∴QB'=AC',QB'∥AC',
∴∠QB'A+∠B'AC'=180°,
∵∠BAC+∠B'AC'=180°,
∴∠QB'A=∠BAC,
又由题意得到QB'=AC'=AC,AB'=AB,
∴△AQB'≌△BCA,
∴AQ=BC=2AD,
即BC=2AD.
11.解:(1)①如图②中,
∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,
②结论:AB∥EC.
理由:∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,
∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,
∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.
故答案为50,AB∥EC.
(2)如图③中,以P为圆心,PB为半径作⊙P.
∵AD垂直平分线段BC,∴PB=PC,∴∠BCE=∠BPE=40°,
∵∠ABC=40°,∴AB∥EC.
(3)如图④中,作AH⊥CE于H,
∵点E在射线CE上运动,点P在线段AD上运动,
∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.
12.解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∴∠DAB=∠EAC,
在△ADB和△AEC中,
AD=AE,∠DAB=∠EAC,AB=AC
∴△ADB≌△AEC,
∴BD=CE,
(2)①如图2,
同(1)的方法得出,△ADB≌△AEC,
∴BD=CE,∠AEC=∠ADB=90°,
∵△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∴∠BDF=30°=∠CEH,
延长DF,在DF的延长线上取一点H,使CH=CF,
∴∠H=∠CFH,
∵∠CFH=∠BFD,
∴∠BFD=∠H,
在△BDF和△CEH中,
∠BFD=∠H,∠BDF=∠CEH,BD=CE,
∴△BDF≌△CEH,
∴BF=CH,
∵CH=CF,
∴BF=CF,
∴点F是BC中点.
②如图3,
∵∠ADB=90°,DA=DB,
∴∠ABD=45°,
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
由①知,∠BDF=30°,
根据三角形的内角和,得,∠BFD=45°,
过点E作EM⊥BF,
设BM=x,在Rt△BGM中,∠ABF=60°,
∴BG=2BM=2x,EM=√3BM=√3x,
在Rt△EMF中,∠BFD=45°,
∴FM=EM=√3x,
∵BF=2,
∴BM+FM=2,
∴x+√3x=2,∴x=√3-1,
∴BG=2x=2(√33-1),
由①知,BF=CF,
∴BC=2BF=4,
∴AB=4,
∴AG=AB-BE=4-2(√3-1)=6-2√3.
故答案为:6-2√3.
13.解:(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
∴AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,即∠BAE=∠DAC,
在△ABE与△ADC中,
,∴△ABE≌△ADC(SAS),
∴∠ABE=∠ACD,
∵∠ABE+∠AFB=∠ABE+∠CFP=90°,
∴∠CPF=90°,
∴BP⊥CD;
(2)在△ABE与△ACD中,
,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,BE=CD,
∵∠PDB=∠ADC,∴∠BPD=∠CAB=90°,∴∠EPD=90°,
∵BC=6,AD=3,∴DE=3,AB=6,
∴BD=6﹣3=3,CD==3,
∵△BDP∽△CDA,∴==,∴==,
∴PD=,PB=∴PE=3﹣=,
∴△PDE的面积=××=.
14.解:(1)∠QEP=60°;
证明:如图1,
∵PC=CQ,且∠PCQ=60°,
则△CQB和△CPA中,
,
∴△CQB≌△CPA(SAS),
∴∠CQB=∠CPA,
又因为△PEM和△CQM中,∠EMP=∠CMQ,
∴∠QEP=∠QCP=60°.
故答案为:60;
(2)∠QEP=60°.以∠DAC是锐角为例.
证明:如图2,
∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
∵线段CP绕点C顺时针旋转60°得到线段CQ,
∴CP=CQ,∠PCQ=6O°,
∴∠ACB+∠BCP=∠BCP+∠PCQ,
即∠ACP=∠BCQ,
在△ACP和△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴∠APC=∠Q,
∵∠1=∠2,
∴∠QEP=∠PCQ=60°;
(3)作CH⊥AD于H,如图3,
与(2)一样可证明△ACP≌△BCQ,
∴AP=BQ,
∵∠DAC=135°,∠ACP=15°,
∴∠APC=30°,∠PCB=45°,
∴△ACH为等腰直角三角形,
∴AH=CH=AC=×4=2,
在Rt△PHC中,PH=CH=2,
∴PA=PH﹣AH=2﹣2,
∴BQ=2﹣2.
相关试卷
这是一份中考数学二轮复习函数综合题 (含答案),共10页。
这是一份2023年中考数学二轮复习《图形的旋转》中档题练习(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学考前强化复习《二次函数与四边形综合题》精选练习(含答案),共25页。