数学八年级下册第16章 分式16.4 零指数幂与负整指数幂零指数幂与负整指数幂教案
展开
这是一份数学八年级下册第16章 分式16.4 零指数幂与负整指数幂零指数幂与负整指数幂教案,共3页。教案主要包含了探索发现,例题学习,课内小结及板书设计;等内容,欢迎下载使用。
16.4.1零指数幂与负整指数幂 教学目标:1.通过探索掌握零指数幂和负整数指数幂=(a≠0,n是正整数).2.进一步掌握整数指数幂的运算性质,并能灵活运用.3、通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。重点、难点:1.重点:掌握整数指数幂的运算性质.2.难点:整数指数幂的运算性质的灵活运用。一、 复习并问题导入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:(m,n是正整数);(2)幂的乘方:(m,n是正整数);(3)积的乘方:(n是正整数);(4)同底数的幂的除法:( a≠0,m,n是正整数,m>n);(5)商的乘方:(n是正整数);问题1 在同底数幂的除法公式时,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m = n或m<n时,情况怎样呢?二、探索发现: 零的零次幂的意义先考察被除数的指数等于除数的指数的情况.例如考察下列算式:52÷52,103÷103,a5÷a5(a≠0).一方面,如果仿照同底数幂的除法公式来计算,得52÷52=52-2=50,103÷103=103-3=100,a5÷a5=a5-5=a0(a≠0).另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1.[概 括]:由此启发,我们规定:50=1,100=1,a0=1(a≠0).这就是说:任何不等于零的数的零次幂都等于1.探索发现2 ;幂我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式:52÷55, 103÷107, 一方面,如果仿照同底数幂的除法公式来计算,得52÷55=52-5=5-3, 103÷107=103-7=10-4.另一方面,我们可利用约分,直接算出这两个式子的结果为52÷55=== 103÷107===[概 括]:由此启发,我们规定: 5-3=, 10-4=.一般地,我们规定: (a≠0,n是正整数)这就是说,任何不等于零的数的-n (n为正整数)次幂,等于这个数的n 次幂的倒数.四、例题学习:例1计算:(1)810÷810; (2)10-2; (3)练 习:计算:(1)(-0.1)0;(2);(3)2-2;(4).例2计算: ; 练习:计算(1)(2)(3)计算:16÷(—2)3—()-1+(-1)0例3用小数表示下列各数:(1)10-4; (2)2.1×10-5.练习:用小数表示下列各数:(1)-10-3×(-2) (2)(8×105)÷(-2×104)3例4探 索现在,我们已经引进了零指数幂和负整指数幂,指数的范围已经扩大到了全体整数.那么,在 “幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.(1); (2)(a·b)-3=a-3b-3;(3)(a-3)2=a(-3)×2 (4) 练习:计算:(1) (2) 六、课内小结及板书设计;1、引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。同底数幂的除法公式am÷an=am-n (a≠0,m>n)当m = n时,am÷an = 当m < n 时,am÷an = 2、任何数的零次幂都等于1吗?(注意:零的零次幂无意义。)3、规定其中a、n有没有限制,如何限制。
相关教案
这是一份华师大版八年级下册2. 菱形的判定教案,共5页。教案主要包含了教材分析,学情分析,教学目标, 教学重点,教学难点,教学方法与工具,课时安排——1课时,教学过程设计等内容,欢迎下载使用。
这是一份八年级下册17.5实践与探索教案,共6页。教案主要包含了教材分析,学情分析,教学目标,教学重点,教学方法,教学准备,教学课时,教学过程等内容,欢迎下载使用。
这是一份华师大版八年级下册第17章 函数及其图象17.1 变量与函数教案及反思,共5页。教案主要包含了知识目标,过程与方法目标,情感与态度目标,教学重点,教学难点,教学关键,学生已有的知识结构,学生学习的困难等内容,欢迎下载使用。