高中数学8.5 空间直线、平面的平行练习题
展开
这是一份高中数学8.5 空间直线、平面的平行练习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
课后素养落实(二十六) 平面(建议用时:40分钟)一、选择题1.已知点A,直线a,平面α,以下命题表述正确的个数是( )①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0 B.1 C.2 D.3A [①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.]2.(多选题)下列命题中正确的是( )A.三角形是平面图形B.四边形是平面图形C.四边相等的四边形是平面图形D.圆是平面图形AD [根据,基本事实1可知AD正确,BC错误.故选AD.]3.两个平面若有三个公共点,则这两个平面( )A.相交 B.重合C.相交或重合 D.以上都不对C [若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.]4.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行B [两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面,选B.]5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1 C.0或1 D.1或3D [当三条直线是同一平面内的平行直线时,确定一个平面;当三条直线是三棱柱侧棱所在的直线时,确定三个平面,选D.]二、填空题6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.∈ [因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.]7.如图,在长方体ABCDA1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条. 5 [由题图可知,既与AB共面又与CC1共面的棱有CD、BC、BB1、AA1、C1D1共5条.]8.已知平面α与平面β、平面γ都相交,则这三个平面的交线可能有________条.1或2或3 [当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.]三、解答题9.已知:A∈l,B∈l,C∈l,D∉l,如图所示.求证:直线AD,BD,CD共面.[证明] 因为D∉l,所以l与D可以确定平面α,因为A∈l,所以A∈α,又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α,所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1ABC三条侧棱延长后相交于一点.[证明] 如图,延长AA1,BB1, 设AA1∩BB1=P,又BB1⊂平面BC1,∴P∈平面BC1,AA1⊂平面AC1,∴P∈平面AC1,∴P为平面BC1和平面AC1的公共点,又∵平面BC1∩平面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.1.设P1,P2,P3,P4为空间中的四个不同点,则“P1,P2,P3,P4中有三点在同一条直线上”是“P1,P2,P3,P4在同一个平面内”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件A [由过一条直线和直线外一点有且只有一个平面,可得P1,P2,P3,P4在同一个平面内,故充分条件成立.由过两条平行直线有且只有一个平面可得,当P1∈l1,P2∈l1,P3∈l2,P4∈l2,l1∥l2时,P1,P2,P3,P4在同一个平面内,但P1,P2,P3,P4中无三点共线,故必要条件不成立.故选A.]2.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ,β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点DD [A,B,C确定的平面γ与直线BD和点C确定的平面重合,故C,D∈γ,且C,D∈β,故C,D在γ和β的交线上.]3.(多选题)如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1四点共面C.A,O,C,M四点共面D.B,B1,O,M四点共面ABC [因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知ABC均正确.]4.如图,在正方体ABCDA1B1C1D1中,平面A1CC1与平面BDC1的交线是________.C1M [因为C1∈平面A1CC1,且C1∈平面BDC1,同时M∈平面A1CC1,且M∈平面BDC1,所以平面A1CC1与平面BDC1的交线是C1M.]如图,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.(1)求证:直线MN⊂平面PQR;(2)求证:点K在直线MN上.[证明] (1)∵PQ⊂平面PQR,M∈直线PQ,∴M∈平面PQR.∵RQ⊂平面PQR,N∈直线RQ,∴N∈平面PQR.∴直线MN⊂平面PQR.(2)∵M∈直线CB,CB⊂平面BCD,∴M∈平面BCD.由(1),知M∈平面PQR,∴M在平面PQR与平面BCD的交线上,同理可知N,K也在平面PQR与平面BCD的交线上,∴M,N,K三点共线,∴点K在直线MN上.
相关试卷
这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率测试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教A版 (2019)8.6 空间直线、平面的垂直达标测试,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。